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Graph Processing Has Many Applications
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Graph Applications Are Memory Bound

4
Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 

Cycles stalled on DRAM / Total Cycles LLC Miss Rate



Graph Applications Are Memory Bound

Figure from “Optimizing Cache Performance for Graph Analytics” ArXiv v1; 
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Problem: Poor LLC locality ⇒ Many long-latency DRAM accesses

Cycles stalled on DRAM / Total Cycles LLC Miss Rate



Reason For Poor Locality - Irregular Memory Accesses
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Reason For Poor Locality - Irregular Memory Accesses
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Typical graph processing kernel



Reason For Poor Locality - Irregular Memory Accesses
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Reason For Poor Locality - Irregular Memory Accesses

Compressed Sparse Row (CSR) Representation 9
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Reason For Poor Locality - Irregular Memory Accesses
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Input Graph

vtxData

Irregular accesses to 
vtxData array

Compressed Sparse Row (CSR) Representation

Typical graph processing kernel

Input Graph



Irregular Accesses Have Poor Temporal And Spatial Locality

11

Time

LLC

2 lines

2 words/line



12

Time

LLC

vtxData[3]
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Outline

❖ Poor Locality of Graph Processing Applications  ✔

❖ Improving locality through Graph Reordering 

❖ Graph Reordering Challenge - Application and Input-dependent Speedups 

❖ When is Graph Reordering an Optimization?

❖ Selective Graph Reordering
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Real-world Graphs Offer Opportunities To Improve Locality

21

Power-law Degree Distribution

Air Traffic Network
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Hubs

Power-law Degree Distribution

Real-world Graphs Offer Opportunities To Improve Locality
Air Traffic Network
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Right figure from “Rabbit Order: Just-in-time Parallel Reordering for Fast Graph Analysis” IPDPS 2016

Community StructurePower-law Degree Distribution

Hubs

Real-world Graphs Offer Opportunities To Improve Locality
Air Traffic Network

Facebook friend Graph
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Right figure from “Rabbit Order: Just-in-time Parallel Reordering for Fast Graph Analysis” IPDPS 2016
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Facebook friend Graph
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Right figure from “Rabbit Order: Just-in-time Parallel Reordering for Fast Graph Analysis” IPDPS 2016

Community StructurePower-law Degree Distribution

Observation: Subset of vertices are accessed together 

CommunitiesHubs

Real-world Graphs Offer Opportunities To Improve Locality
Air Traffic Network

Facebook friend Graph



Reordering To Improve Locality of Graph Applications
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Key Insight: Store commonly accessed vertices contiguously in memory



Reordering To Improve Locality of Graph Applications
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Power-law graph

Key Insight: Store commonly accessed vertices contiguously in memory



Reordering To Improve Locality of Graph Applications
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Reorder

Power-law graph

Key Insight: Store commonly accessed vertices contiguously in memory
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Graph Reordering Is Not A Panacea 
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Graph Reordering Is Not A Panacea 
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Graph Reordering Is Not A Panacea 
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Net speedup from Reordering depends on the 
Application and Input Graph

Graph Reordering Is Not A Panacea 



Question: What are the properties of Applications 
and Input Graphs that benefit from Reordering?
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Characterization Space

46

3 
Graph 

Reordering 
Techniques

15 
Applications

(Ligra, GAP)

8 
Input Graphs

(M vertices, B edges)

Server-class Processor

(dual-Socket, 28 cores, 35MB LLC, 64GB DRAM)



Lightweight Reordering (LWR) Techniques

➢ Rabbit Ordering [Arai et. al., IPDPS 2016]

➢ Frequency-based Clustering (or “Hub-Sorting”) [Zhang et. al., Big Data 

2017]

➢ Hub-Clustering (Our Variation of Hub Sorting) 
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Selection Criteria: Low reordering overhead 
(Require very few runs/iterations to amortize overheads)



LWR 1 - Rabbit Ordering

48
Figure from “Rabbit Order: Just-in-Time Parallel Reordering for Fast Graph Analysis” IPDPS 2016



LWR 1 - Rabbit Ordering

49
Figure from “Rabbit Order: Just-in-Time Parallel Reordering for Fast Graph Analysis” IPDPS 2016
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Figure from “Rabbit Order: Just-in-Time Parallel Reordering for Fast Graph Analysis” IPDPS 2016

● Fast community detection using 
incremental aggregation

● Complexity - O(|E| - ck|V|)
 where c = clustering coeff. 

k = avg. degree

LWR 1 - Rabbit Ordering



LWR 2 & 3 - HubSorting & HubClustering
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LWR 2 & 3 - HubSorting & HubClustering
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LWR 2 & 3 - HubSorting & HubClustering
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degrees

Vtx IDs

HubSorting HubClustering

Locality Benefits Temporal AND Spatial ↑↑ Temporal ↑

Complexity O(|V|.logV) ↓↓ O(|V|) ↓
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Legend for Results
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Application

Input GraphSpeedup with respect to original ordering of graph

Reordering 
Technique



Legend for Results
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Speedup excluding 
the overhead of 
reordering

(Max Speedup)



Legend for Results
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Speedup including 
the overhead of 
reordering

(Net Speedup)



Legend for Results

60

Reordering overhead

Speedup including 
the overhead of 
reordering

(Net Speedup)



15 Applications →5 Categories

• Category 1: Applications processing Large Frontiers are good candidates

• Category 2: Symmetric bipartite graphs require bi-partiteness aware reordering

• Category 3: Applications processing small frontiers offer limited opportunity

• Category 4: Reordering for Push-style applications introduces false-sharing 

• Category 5: Reordering affects convergence for applications with ID-dependent 

computations 

61



15 Applications →5 Categories

• Category 1: Applications processing Large Frontiers are good candidates

• Category 2: Symmetric bipartite graphs require bi-partiteness aware reordering
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Category I - Applications Processing a Large Fraction Of Edges

❖ PageRank (Ligra & Gap)

❖ Graph Radii Estimation (Ligra)
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Category I - Applications Processing a Large Fraction Of Edges
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Observation 1: LWR provides end-to-end 
speedups in some cases

Category I - Applications Processing a Large Fraction Of Edges
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Observation 2: Maximum speedups from 
HubSort > HubCluster

Category I - Applications Processing a Large Fraction Of Edges

Observation 1: LWR provides end-to-end 
speedups in some cases
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Observation 3: Reordering Overhead is 
HubSort > HubCluster

Category I - Applications Processing a Large Fraction Of Edges

Observation 2: Maximum speedups from 
HubSort > HubCluster

Observation 1: LWR provides end-to-end 
speedups in some cases
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Observation 4: HubSort strikes a balance 
between effectiveness and overhead

Category I - Applications Processing a Large Fraction Of Edges

Observation 3: Reordering Overhead is 
HubSort > HubCluster

Observation 2: Maximum speedups from 
HubSort > HubCluster

Observation 1: LWR provides end-to-end 
speedups in some cases



Category II - Executions On Symmetric Bipartite Graphs
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❖ Collaborative Filtering (Ligra)



Category II - Executions On Symmetric Bipartite Graphs
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Category II - Executions On Symmetric Bipartite Graphs

71

Surprising trend: HubSort causes net slowdowns



Category II - Reason For Slowdown With HubSort
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Part1 Part 2
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[0, V)

Category II - Reason For Slowdown With HubSort

Part1 IDs Part2 IDs

Original Ordering

Heatmap showing the 
part that each vertex 
belongs to

Part1 Part 2
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[0, V)

Category II - Reason For Slowdown With HubSort

Original Ordering
Part1 Part 2

Part1 IDs Part2 IDs

Heatmap showing the 
part that each vertex 
belongs to
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[0, V)

Category II - Reason For Slowdown With HubSort

Range of Irregular accesses 
to vtxData = #nodes in a part

Original Ordering
Part1 Part 2

Part1 IDs Part2 IDs
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Category II - Reason For Slowdown With HubSort

[0, V)

Vertices from different parts 
assigned consecutive IDs

↓
Increased range of irregular 

accesses to vtxData

Original Ordering
Part1 Part 2

Part1 IDs Part2 IDs
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Category II - Reason For Slowdown With HubSort

[0, V)

Opportunity: Bipartiteness-aware 
Graph Reordering Techniques

Original Ordering
Part1 Part 2

Part1 IDs Part2 IDs



Category III - Applications Processing a Small Fraction of Edges
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❖ Betweenness Centrality 

❖ BFS 

❖ K-Core Decomposition
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Low speedup even without 
Reordering overheads

Category III - Applications Processing a Small Fraction of Edges
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Category III - Applications Processing a Small Fraction of Edges
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Category III - Applications Processing a Small Fraction of Edges
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Category III - Applications Processing a Small Fraction of Edges
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Limited reuse in vtxData accesses
↓

Lower headroom for reordering

Category III - Applications Processing a Small Fraction of Edges
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❖ When is Graph Reordering an Optimization?
➢ Characterization Space ✔
➢ Which Applications benefit from Reordering? ✔
➢ Which Input Graphs benefit from Reordering?

❖ Selective Graph Reordering
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Speedup From HubSorting Varies Across Inputs

HubSort

Category I 
Application
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HubSort

✅ ✅ ✅

✅

✅

❌ ❌ ❌

Need to predict speedup from HubSorting 
AND 

selectively perform HubSorting

Speedup From HubSorting Varies Across Inputs

Category I 
Application



Understanding Performance Improvement From HubSorting
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Cache line

vtxData



Understanding Performance Improvement From HubSorting

89

Hub Vertices

Layout of hubs in 
original ordering

Cache line



Understanding Performance Improvement From HubSorting
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HubSort

Layout of hubs in 
original ordering

Layout of hubs after 
reordering vertices 

Hub Vertices

Cache line Cache line



Understanding Performance Improvement From HubSorting
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HubSort

Layout of hubs in 
original ordering

Layout of hubs after 
reordering vertices 

Hub Vertices

Cache line Cache line

HubSorting will be most effective for Graphs with:

❖ Property #1: Skew in the degree-distribution (Presence of Hubs)
❖ Property #2: Sparsely distributed hub vertices (Quality of original ordering)



Packing Factor - A Measure of Hub Density 
Packing Factor is a measure of how densely the hubs are packed after 
HubSorting
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Cache line

Hub Vertices

Layout of the original 
ordering of vertices

Layout after reordering 
vertices by HubSorting

HubSort

Cache line

 



Packing Factor Can Predict Speedup From HubSorting
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Pearson Correlation = 0.92
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Pearson Correlation = 0.92

Speedup from 
HubSorting for a given 
pair of (Application, 
Input Graph)

Packing Factor Can Predict Speedup From HubSorting
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Pearson Correlation = 0.92

Packing Factor is a good 
predictor for Speedup

Packing Factor Can Predict Speedup From HubSorting
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❖ Selective Graph Reordering
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Selective Graph Reordering
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G`= HubSort(G)

Process(G`)



Selective Graph Reordering
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Increasing order of Packing Factor

G`= HubSort(G)

Process(G`)



Selective Graph Reordering
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G`= HubSort(G)

Process(G`)

PF = ComputePF(G)
if (PF > 4):
  G` = HubSort(G)
  Process(G`)
else:
  Process(G)



Selective Graph Reordering
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G`= HubSort(G)

Process(G`)

PF = ComputePF(G)
if (PF > 4):
  G` = HubSort(G)
  Process(G`)
else:
  Process(G)



Selective Graph Reordering
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Selective 
Reordering 
avoids 
slowdowns 



Selective Graph Reordering
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Computing 
Packing Factor 
does not 
degrade 
performance 



Selective Graph Reordering
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Selective 
Reordering is 
a viable 
Optimization



Conclusions

❖ Graph Reordering does not benefit all Application and Input Graphs

❖ Opportunity to design new Reordering techniques for specific applications

❖ Packing Factor enables Selective Graph Reordering
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Source Code Available

106

● Includes code for:
○ Packing Factor
○ Lightweight Reordering Techniques
○ Selective HubSorting

● Open sourced at - 

○ https://github.com/CMUAbstract/Graph-Reordering-IISWC18



Thank You!
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Backup Slides
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Use-cases Where Reordering Overhead Cannot be Amortized

Time

Left fig. from “Chronos: A Graph Engine for Temporal Graph Analysis” EuroSys 2014; Right fig. from “Graph Evolution: Densification and Shrinking Diameters” TKDD 2007

Temporal Graph Mining

Sophisticated Reordering Techniques are impractical for cases where graph is 
processed only a few times
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Sophisticated Reordering Techniques Impose High Overhead

Assumption: Reordered graph will be processed multiple times
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Irregular Accesses Have Poor Temporal And Spatial Locality
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Graph Applications

115

Ligra
➢ Page Rank
➢ Page Rank-Delta
➢ SSSP – Bellman Ford
➢ Collaborative Filtering
➢ Radii
➢ Betweenness Centrality
➢ BFS
➢ Kcore
➢ Maximal Independent Set
➢ Connected Components

GAP
➢ Page Rank
➢ SSSP – Delta Stetting
➢ Betweenness Centrality
➢ BFS
➢ Connected Components

11 Distinct Algorithms



HW Platform

❖ Dual-Socket Intel Xeon 
E5-2660v4 processors

❖ 14 cores per Socket 
(2HT/core)

❖ 35 MB Last Level Cache per 
processor

❖ 64 GB of main memory

116

32GB DRAM

35MB 
Last Level Cache

35MB 
Last Level Cache

Core
1

Core
2

Core
14

Core
1

Core
2

Core
14

32GB DRAM

…. ….

Socket 1 Socket 2



Input Graphs
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Input Graphs
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Irregular working set size >> Aggregate LLC Capacity



Input Graphs
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Irregular working set size >> Aggregate LLC Capacity

We use the original ordering of Input Graphs



Lightweight Reordering Can Provide End-to-end Speedups

Figure from “Rabbit Order: Just-in-Time Parallel Reordering for Fast Graph Analysis” IPDPS 2016
120



Lightweight Reordering Can Provide End-to-end Speedups

Figure from “Rabbit Order: Just-in-Time Parallel Reordering for Fast Graph Analysis” IPDPS 2016

Reordering techniques exploiting 
power-law distributions and community structure 

can have low-overheads
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Category II - Executions On Symmetric Bipartite Graphs
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Surprising trends:
● HubSort offers the least performance benefits
● HubSort causes slowdowns
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Assigning vertices from each part of the graph a 
contiguous range is good for temporal locality

Need a simple mechanism to 
assign hub vertices from the same 
part a contiguous range of IDs

Part1 Part 2

Category II - Reason For Slowdown With HubSort



Category IV - Push-based Graph Applications

124

Push-phase Pull-phase

+ Work Efficient execuztion
-  Overhead of synchronization

+ No synchronization required
-  Work-inefficient (iterate over 
all Vertices)
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Category IV - Push-based Graph Applications

Reordering causes an increase in false-sharing 

LWR favors pull-style 
graph applications



Category V - LWR can affect convergence

126

Vertex IDs influence amount of work done each 
iteration



Category V - LWR can affect convergence
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Increase in Iterations until convergence due to LWR

Opportunity to 
accelerate convergence 
by reordering vertices



The Need For Selective Lightweight Reordering
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Unconditionally  performing LWR causes net slowdowns on some input graphs

Completely avoid LWR misses speedups up to 1.8x

Need to predict speedup from LWR for an input graph and only 
selectively perform LWR



Using Packing Factor for Selective Reordering

129Selective Reordering avoids slowdowns for graphs with low Packing Factor 



Using Packing Factor for Selective Reordering
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The low overhead of Packing Factor computation does not sacrifice speedup 
for high Packing Factor graphs



Speedups From HubSorting Are Due To Locality 
Improvements
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Computing Packing Factor
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