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Abstract—Sparse linear algebra kernels achieve sub-optimal
performance due to their poor cache locality. Matrix reordering
is an effective pre-processing optimization that improves cache
locality and performance of these kernels. While many reordering
techniques have been proposed, most prior work on matrix
reordering suffer from two key limitations: (1) they evaluate
their reordering proposal on a small set of arbitrarily-selected
inputs and (2) they do not quantify the additional headroom for
improvement after reordering is applied. To address these two
limitations, we perform a detailed characterization of reordering
techniques across a broad set of 50 input matrices where we
quantify the ability of matrix reordering techniques to bring
sparse linear algebra kernels close to hardware limits. Our
analysis reveals that community-based matrix reordering is most
effective at optimizing the execution of sparse linear algebra
kernels, bringing the cuSPARSE SpMV kernel to within 54%
of ideal run time on an NVIDIA A6000 GPU on average.
However, community-based reordering is not uniformly effective
across all 50 input matrices. We investigate the reasons when
community-based reordering falls short and propose an enhanced
version of community-based reordering that provides up to 1.57×
additional performance improvements for the SpMV kernel.

I. INTRODUCTION

As sparse linear algebra kernels are typically memory-
bound [42], they are well-suited to GPU execution due to high
GPU DRAM bandwidth. However, these kernels achieve sub-
optimal performance on GPUs. We characterized the DRAM
bandwidth utilization for cuSPARSE’s SpMV (Sparse Matrix
times Dense Vector) kernel on NVIDIA’s A6000 GPU across
a broad range of matrices and observed that the SpMV kernel
achieves only 63% of the theoretical peak bandwidth. The
primary reason for this sub-optimal performance is poor cache
locality which stems from the characteristic irregular memory
access pattern of sparse linear algebra kernels. The cuSPARSE
SpMV kernel achieves an average L2 cache hit rate of only
34% (maximum of 62%) which leads to many expensive main
memory accesses that end up hurting performance. To improve
the performance of sparse linear algebra kernels on GPUs
requires improving the cache locality of these kernels.

Matrix reordering is a software-based cache locality op-
timization that has been shown to be highly effective for
irregular memory access workloads such as graph analytics
and sparse linear algebra kernels [1], [2], [17], [41], [43].
Since matrix reordering is a pre-processing based solution,
it can be easily applied to a broad range of workloads without
requiring any application-level changes. The effectiveness and

versatility of matrix reordering has inspired extensive research
in developing solutions with varying levels of effectiveness
and sophistication [2], [5], [10], [28], [41]. However, most
prior work on matrix reordering techniques suffer from two
key limitations. First, most techniques have been evaluated
on a small set of arbitrarily-selected inputs. Since the locality
and performance improvements offered by matrix reordering
are a function of the structural properties of the input, the
benefits of the reordering technique may be overstated if the
set of chosen inputs are biased towards matrices exhibiting
specific properties. Second, to the best of our knowledge, all
prior reordering proposals have only compared their perfor-
mance improvements against prior reordering strategies. Ab-
solute performance measurements that quantify the remaining
distance to peak performance on a given architecture after
reordering is applied are absent from the vast literature on
matrix reordering. Addressing these two shortcomings of prior
matrix reordering research is an important step for our ultimate
goal of developing a universally effective matrix reordering
solution that can bring the performance of sparse linear algebra
kernels close to the peak GPU performance.

To address the first shortcoming, we clearly define our
process for curating the matrices used in our evaluation so
as to avoid any selection bias. Our final dataset consists of
50 matrices from 3 different matrix/graph repositories [13],
[27], [32]. To address the second shortcoming, we compare
the performance achieved by sparse linear algebra kernels
running on reordered matrices against ideal DRAM traffic and
performance that can be achieved on our evaluation platform.
We evaluated the locality and performance improvements
offered by multiple, state-of-the-art matrix reordering tech-
niques across our broad data set of 50 matrices and observed
that a community-based matrix reordering technique called
RABBIT [1] is the most effective reordering technique overall
(bringing cuSPARSE SpMV’s performance to 1.54× of the
ideal value on average). The benefits of RABBIT, however,
are not uniform across all our input matrices. For some inputs,
RABBIT brings the DRAM traffic of cuSPARSE’s [33] SpMV
kernel within 10% of ideal traffic, corresponding to when the
last level cache only incurs compulsory misses [22]. For other
inputs, the DRAM traffic of the SpMV kernel is multiple
factors above the ideal value. We define metrics to analyze
the quality of communities detected by RABBIT and its effect
on the locality and performance improvements provided by



RABBIT. We make two interesting observations from our
analysis. First, as the skew in the degree distribution of the
matrix increases (due to the presence of a small number of
“hub” nodes with disproportionate connectivity compared to
most of the nodes in the matrix), the quality of communities
detected by RABBIT (and, consequently, the quality of matrix
reordering) decreases. Second, there is significant community
structure even in input matrices where RABBIT is unable to
bring the performance of sparse linear algebra kernels close to
hardware limits. We use these two observations to develop en-
hancements to RABBIT . Our new reordering proposal (called
RABBIT++) is more effective than RABBIT in bringing sparse
linear algebra kernels closer to ideal locality and performance
on our evaluation platform. The performance of cuSPARSE
SpMV on RABBIT++ ordered matrices is within 46% of the
ideal run time on average.

In summary, this paper makes the following contributions:

• We clearly define our input matrix selection process to
find a bias-free evaluation data set (Section III).

• We characterize the locality and performance of state-
of-the-art matrix reordering techniques on cuSPARSE’s
SpMV kernel (Section IV).

• We explain the link between quality of community
detection and the performance achieved with RABBIT
(Section V) and provide the intuition for developing
RABBIT++ (Section VI-A).

• We demonstrate the efficacy of RABBIT++ using cache
simulations (Section VI-B) and show its effectiveness
across other cuSPARSE kernels (Section VI-D).

II. BACKGROUND ON MATRIX REORDERING

This section highlights the main reason why sparse linear
algebra kernels typically suffer from poor cache locality. We
also develop the intuition for how matrix reordering techniques
leverage structural properties of real-world matrices to improve
locality and performance of sparse linear algebra kernels.

Source of poor cache locality: The primary cause for poor
cache locality in sparse linear algebra kernels is the represen-
tation format for input data. Since sparse linear algebra kernels
typically operate on inputs where more than 99% of the entries
in the adjacency matrix are zero, using compressed formats to
represent the matrices is a necessity. While compressed repre-
sentation formats such as the Compressed Sparse Row (CSR)
are great for memory efficiency, they cause irregular memory
accesses in sparse linear algebra kernels when dereferencing
the matrix’s non-zeros, which leads to poor cache locality.

Algorithm 1 SpMV kernel with sparse matrix in CSR format
1: Y ← 0
2: parfor row in [0, |Rows|) do
3: rowStart← A.rowOffsets[row]
4: rowEnd← A.rowOffsets[row + 1]
5: for i in [rowStart, rowEnd) do
6: Y[row] += A.values[i] ∗ X[A.coords[i]]

1

0
2

3 5

4 6

7

8

3

5
6

8 0

4 2

7

1

Comm-0 Comm-2Comm-1

0 1 2 3 54 6 7 8
0
1
2
3
4
5
6
7
8

0 1 2 3 54 6 7 8
0
1
2
3
4
5
6
7
8

C0

C1

C2

Fig. 1: Community-based matrix reordering: Kernel exe-
cutions on a community-ordered matrix will have a smaller
cache footprint. (Matrix non-zeros are represented in gray)

Algorithm 1 lists the pseudo code for the SpMV (Sparse
Matrix multiplied by Dense Vector) kernel where the sparse
matrix is represented in the CSR format. The algorithm shows
that the output vector (Y ) and the components of the CSR
format (rowOffsets, coords, and values) are accessed in a
streaming fashion. These regular accesses are a great fit for the
high streaming DRAM bandwidth offered by GPUs. However,
the access pattern for the input vector (X) depends on the
contents of the coords array of the CSR. Since the contents
of a CSR can be arbitrarily ordered, input vector memory
accesses are irregular. Furthermore, since sparse linear algebra
kernels such as SpMV typically operate on large matrices with
millions of rows and columns, the worst-case cache footprint
requirements of the input vector (|Rows| ∗ elemSize) can be
orders of magnitude higher than the available last level cache
capacity on GPUs. Therefore, SpMV and other sparse linear
algebra kernels perform expensive fine-grained accesses from
DRAM due to their poor cache locality.

Leveraging community-structure to improve locality:
While sparse linear algebra kernels all suffer from irreg-
ular memory accesses, the non-zero patterns of real-world
matrices are not entirely random. Instead, real-world ma-
trices exhibit strong structural properties in their non-zero
distribution such as power-law degree distribution [4], small-
world behavior [30], and community structure [15]. Matrix
reordering techniques leverage these structural properties to
change the order of rows and columns in the matrix to make
the memory accesses more regular. Figure 1 shows an example
of community-based matrix reordering. As the graph1 on the
top left is randomly ordered, the corresponding adjacency
matrix representation of the graph (bottom left panel) has non-
zeros scattered across the matrix. In contrast, the reordered
graph on the top right panel groups the nodes into three
communities and orders them consecutively. Consequently, the

1We use the terms graph/matrix interchangeably throughout the text and
also mix terminologies (nodes ↔ rows/cols and edges ↔ non-zeros).



corresponding adjacency matrix (bottom right panel) has sig-
nificant structure with most of the non-zeros close to the main
diagonal. While SpMV execution on the randomly-ordered
matrix may require all nine elements of the input vector to be
present in the cache throughout the execution, SpMV on the
community-ordered matrix only needs to cache four elements
of the input vector at any point in the execution. In summary,
matrix reordering techniques can significantly improve the
cache locality of sparse linear algebra kernels. Section V
provides details on how communities can be detected.

III. PROCESS FOR SELECTING INPUT MATRICES

The previous section showed how leveraging structural
properties of the matrix (such as community structure) can
improve cache locality of sparse linear algebra kernels. How-
ever, not all matrices necessarily exhibit the structural property
exploited by a specific reordering technique. Therefore, to
fulfill our goal of developing a universally effective reordering
solution that improves locality across many different kinds
of matrices, it is imperative that we evaluate our matrix
reordering solutions across a broad set of diverse inputs.

Prior work on matrix reordering techniques have used an
arbitrary input selection process, and most reordering pro-
posals were evaluated on fewer than 10 inputs [1]–[3], [16],
[17], [23], [28], [41], [43]. In this work, we clearly specify
our input matrix selection process and take steps to avoid
any input selection bias. Our main repository for matrices is
the SuiteSparse matrix collection (formerly the University of
Florida Sparse Matrix Collection) [13]. We use the following
criteria for selecting inputs:

• We only consider square matrices with more than 1.5M
nodes. For smaller matrices, the worst-case cache foot-
print for the input vector (1.5M ∗ 4B as described in
Section II) would be smaller than the 6MB L2 cache
capacity of the GPU used in our evaluation (Table I).

• We restrict the number of non-zeros to 2.5B because of
memory capacity limitations on our GPU (Table I).

• SuiteSparse organizes matrices into groups such that
matrices uploaded by the same publisher are assigned
to the same group. To restrict the pool of matrices to a
reasonable number, when there are multiple matrices in
the same group we select the largest matrix in that group,
since all matrices within a group tend to have similar
properties. The exceptions to this rule are the SNAP and
DIMACS10 groups for which we run all matrices since
they are aggregated from different sources.

The above selection process yields 41 input matrices from
SuiteSparse. We apply the same constraints to two other graph
repositories, Konect [27] and Web Data Commons [32], where
we obtain seven and two matrices respectively from each
repository. In total, our final data set consists of 50 input
matrices spanning a wide range of matrix sizes – 1.5M to
226M rows, 5M to 2B non-zeros, and average row-lengths
(i.e. average degree) ranging from 2 to 139. The input ma-
trices come from diverse range of sources including social

networks, hyperlink graphs, circuit simulation matrices, non-
linear optimization problems, computational fluid dynamics,
road networks, protein k-mer graphs, knowledge databases,
electro-magnetics problems, and DNA electrophoresis models.
Evaluation of matrix reordering techniques across such a
diverse range of inputs provides more robust results than
employing narrower data sets.

IV. ANALYSIS OF EXISTING REORDERING TECHNIQUES

We now evaluate the effectiveness of different matrix re-
ordering solutions across the broad range of matrices intro-
duced in Section III. To quantify the headroom for improve-
ment after reordering, we compare the different reordering
techniques based on their ability to bring sparse kernel per-
formance close to hardware limits.

A. Reordering techniques evaluated

For our evaluation, we used four recent matrix reorder-
ing techniques that leverage the power-law degree distri-
bution and community structure commonly found in real-
world matrices. The four reordering techniques are degree-
sorting (DEGSORT), degree-based grouping (DBG), rabbit
(RABBIT), and gorder (GORDER). DEGSORT is a simple
reordering technique that assigns vertex IDs in decreasing
order of degree so as to pack highly connected vertices into
the fewest number of cache lines. DBG [17] divides a matrix’s
vertices into different buckets based on specific degree ranges
and then groups together IDs for members within a group
while maintaining the same relative ordering as the original
matrix. Unlike DEGSORT, which completely reassigns all
the IDs of a matrix, DBG attempts to pack highly accessed
vertices into fewer cache lines while also retaining some of
the locality benefits of the original ordering (if any). DBG was
shown to be more effective than other popular degree-based
reordering techniques such as Frequency-based clustering [43]
and HubCluster [2]. Both DEGSORT and DBG are designed
to leverage the power-law degree distribution in matrices. We
use in-degrees for both DEGSORT and DBG based on the ob-
servations of prior work [2], [17] for push-style workloads [6],
[9]. RABBIT [1] is a community-based matrix reordering
technique that first performs community detection on the ma-
trices and then assigns community members consecutive IDs.
RABBIT was shown to match or exceed the performance of
many popular reordering techniques including SlashBurn [31],
Reverse Cuthill-Mckee [23], and METIS [24]. GORDER [41]
uses an approximation algorithm to find an ordering that
maximizes a locality score. A high locality score is achieved
when nodes in a sliding window have a large number of
overlapping in-neighbors. We refer interested readers to the
original publications for more details on the four reordering
techniques. Finally, in addition to the above four reordering
techniques, we also evaluate the original node ordering of
matrices as found in the public datasets (ORIGINAL) and
when nodes are randomly assigned IDs (RANDOM).



TABLE I: NVIDIA A6000 GPU Specifications [35], [36].
Peak Compute Throughput (SP) 38.7 TFLOPS L2 Cache Capacity 6 MB
Peak DRAM Bandwidth 768 GB/s Main Memory Capacity 48 GB

B. Ideal SpMV Locality and Performance

To the best of our knowledge, all prior work on matrix
reordering only compare themselves to other reordering tech-
niques. While comparisons against prior reordering techniques
are certainly insightful, comparing the locality and perfor-
mance improvements offered by matrix reordering against
hardware limits is useful for guiding future development
efforts of better reordering techniques. We primarily focus
our analysis on the SpMV (Sparse Matrix multiplied by a
Dense Vector) kernel, but we also present results for other
kernels in Section VI-D. The minimum DRAM traffic (or
compulsory traffic) for the SpMV kernel (Algorithm 1) is
achieved when the last level cache only incurs compulsory
cache misses [22] (i.e. data is brought into the cache only
once and reused completely). Therefore, assuming 4 bytes for
matrix values and the CSR coordinates and an |N | x |N | sparse
matrix with |NZ| non-zeros, the compulsory traffic for SpMV
is (2∗|N |∗4B)+((|N |+1+|NZ|+|NZ|)∗4B) where the first
part comes from moving the input (X) and output (Y) vectors
and the second part comes from the CSR (A.rowOffsets,
A.coords, and A.values respectively).

Based on the roofline analysis [42], SpMV is typically
a memory-bound kernel. The theoretical upper-bound on
arithmetic intensity (i.e. floating point operations per byte
transferred from DRAM) for SpMV is 0.25 which is much less
than the arithmetic intensity required to become computation-
bound on most architectures (typically ∼10). Specifically, for
the NVIDIA A6000 GPU, on which we perform all our
experiments, applications need an arithmetic intensity of at
least 50 to be limited by the computation units. Table I lists
the specifications of our evaluation platform. Therefore, SpMV
performance is limited by the DRAM bandwidth, and ideal
SpMV performance corresponds to moving compulsory traffic
at peak DRAM Bandwidth. To compute the minimum (ideal)
execution time for SpMV on a given input matrix, we divide
the compulsory DRAM traffic (listed above) by the peak
achievable DRAM bandwidth on the NVIDIA A6000 GPU
(672GB/s as determined using BabelStream [14]).
C. Observations on existing reordering techniques

Figure 2 shows the DRAM traffic (normalized to compul-
sory traffic) for cuSPARSE’s SpMV kernel (compiled with
cuda-11.7 and performance counter values collected using
NVIDIA Nsight Compute [37]). The results reveal 5 inter-
esting trends:
Observation 1: Matrix reordering can bring SpMV’s
DRAM traffic very close to ideal. As shown in Figure 1,
matrix reordering techniques can improve the structure of non-
zeros in a matrix and reduce the dynamic working set so as to
fit in the available on-chip cache. Out of the 50 matrices used
in our evaluation, matrix reordering helps bring the DRAM

traffic of the SpMV kernel to within 10% of ideal traffic for 22
matrices which indicates that reordering maximizes the reuse
in the 6MB L2 cache of the NVIDIA A6000 GPU.
Observation 2: The ability to reach ideal traffic is un-
related to the matrix size. For example, we are able to
achieve close to ideal traffic for the sk-2005 matrix (50.91M
rows/cols and 1.93B non-zeros) whose total cache footprint
is much larger than 6MB. Conversely, we are only able to
bring SpMV’s DRAM traffic to about 1.5× compulsory traffic
for the smaller com-LiveJournal1 matrix (4M rows/cols
and 69.36M non-zeros). These results indicate that the ability
to reach compulsory traffic is a function of the structural
properties of the matrix instead of their shape or size.
Observation 3: ORIGINAL ordering can be a misleading
baseline. The ORIGINAL ordering of matrices exhibit a wide
range of DRAM traffic with some inputs such as sk-2005
already achieving compulsory traffic whereas other inputs such
as pld-arc achieve DRAM traffic close to a RANDOM
ordering. The primary problem with ORIGINAL is that the
ordering does not stem from any inherent property of the
matrix generation process. Instead the ordering reflects an
arbitrary choice made by the dataset publisher. For example,
both sk-2005 and pld-arc are matrices representing web-
crawls, but they achieve very different DRAM traffic with
their respective ORIGINAL ordering because the publisher
of the sk-2005 dataset applied a sophisticated reordering
algorithm [10] whereas the publishers of pld-arc did not.
Additionally, as public datasets often do not track any in-
formation on how the matrices were generated or ordered,
ORIGINAL ordering is an ill-defined concept.
Observation 4: RABBIT is consistently the most effective
reordering technique. The DEGSORT and DBG matrix re-
ordering techniques very rarely bring SpMV’s DRAM traffic
close to ideal and are only effective for matrices exhibit-
ing very strong power-law degree distribution. In contrast,
community-based matrix reordering (RABBIT) is broadly
effective across all the 50 matrices. In addition to achieving
the lowest mean DRAM traffic, RABBIT is the best reordering
technique for 26 out of 50 matrices and is on average only 11%
away from the best reordering technique for the remaining 24
matrices. While GORDER is also a broadly effective matrix
reordering technique, prior work has showed that it can impose
extreme reordering overheads that overshadow its benefits [2].
We corroborate this finding in Section VI-C.
Observation 5: Matrix reordering techniques can bring
SpMV’s execution close to ideal run time. We do not include
the run time (normalized to ideal) across reordering techniques
in the interest of space. However, as noted in the caption of
Figure 2, SpMV’s performance trends across different matrix
reordering techniques largely tracks the DRAM traffic num-
bers. Across all reordering techniques, RABBIT offers the best
performance for SpMV, bringing the mean run time to within
54% of the ideal run time as calculated in Section IV-B).

In summary, the results in Figure 2 show the pervasiveness
of community-structure in real-world matrices and the broad
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Fig. 2: SpMV DRAM traffic (normalized to compulsory traffic) with different matrix reordering techniques: Mean DRAM
traffic numbers across different reordering techniques are – RANDOM (3.36×), ORIGINAL (1.54×), DEGSORT (1.61×), DBG
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RANDOM (6.21×), ORIGINAL (1.96×), DEGSORT (2.17×), DBG (1.94×), GORDER (1.56×), and RABBIT (1.54×).

effectiveness of the community-based matrix reordering tech-
nique RABBIT. Therefore, the main focus of our work is to
understand how RABBIT improves locality and performance
for sparse linear algebra kernels and identify opportunities to
further improve RABBIT where it falls short.

V. EXPLAINING IMPROVEMENTS WITH RABBIT

The results in Figure 2 show that RABBIT is effective at
improving the locality and performance of cuSPARSE’s SpMV
kernel. However, RABBIT’s benefits are not uniform. While
for some matrices RABBIT is able to achieve close to ideal
DRAM traffic, for other inputs the traffic for RABBIT is much
further away from ideal. In this section, we first present a high-
level overview of how RABBIT works and develop metrics to
help explain when RABBIT is able to bring the SpMV kernel
close to hardware limits versus when it cannot.

A. Metrics for analyzing quality of RABBIT’s communities

RABBIT [1] was developed to leverage the hierarchical
community structure present in many real-world networks,
such as people organized into cliques based on shared in-
terests and, within each group, sub-groups based on more
niche interests. The authors of RABBIT sought to map the
hierarchical communities onto the multi-level, hierarchical
caches available on server-class CPUs, with the most tightly-
knit innermost communities mapped to the small, fast cache
closest to the processor and the looser, higher-level commu-
nities assigned to the larger, on-chip cache closer to main-
memory. The core of RABBIT, community detection, is a well-
studied problem [10], [15], [19], [29], and RABBIT is based
on a popular class of community detection algorithms that
maximize modularity [34]. Simply put, modularity measures
the fraction of edges in a graph that only connect vertices of
the same community minus the expected fraction if edges were
randomly distributed. Higher values of modularity indicate
that the communities discovered in the graph are of high
quality and are able to effectively partition the graph. However,
as a quality measure for community detection, modularity is
difficult to visualize. Thus we introduce a simpler metric called
insularity to measure community detection quality.

Figure 1 showed how community-based matrix reordering
created more structure within the matrix’s non-zeros and,
therefore, reduced cache misses. Insularity is the fraction of
edges that only connect members within the same community
(i.e. intra-community edges) divided by the total number of
edges in the graph. In the example shown in Figure 1, the
insularity value of the graph after community-based matrix
reordering is 0.83 ( 2024 ). A high insularity value (insularity
ranges from 0 to 1) is desirable because it indicates that, at
any given point, most of the irregular accesses are to nodes of
a single community, which maximizes cache locality. As we
show later, high insularity values typically correspond to small
community sizes, and smaller communities are more likely to
fit within the on-chip cache and incur fewer DRAM accesses.

To show the impact of insularity on the performance
achieved with RABBIT, we plot the run time of the cuSPARSE
SpMV kernel (normalized to the ideal run time) with input
matrices arranged in increasing order of insularity (Figure 3).
Figure 3 shows that as the matrix insularity increases, RABBIT
becomes more effective at bringing the performance of the
SpMV kernel closer to ideal run time. Specifically, for matrices
with insularity ≥ 0.95, RABBIT brings SpMV’s performance
to within 26% of the ideal run time. For the remaining matrices
with insularity values < 0.95, the average run time achieved
by RABBIT is 1.81× the ideal run time.

B. Impact of matrix structure on insularity

RABBIT brings the SpMV performance very close to hard-
ware limits for high-insularity matrices (Figure 3). However,
the mawi matrix is an exception; despite having a high
insularity value of 0.988, the run time with RABBIT for
mawi is 4.18× the ideal value. The reason for this anomalous
behavior is that while for most inputs a high insularity value
corresponds to a small average community size, structural
properties of the mawi matrix force RABBIT’s community
detection algorithm to terminate early and not detect many
communities. Specifically, the largest community detected by
RABBIT for the mawi matrix corresponds to nearly 98% of
the matrix size. The mawi matrix represents a corner case
where the insularity metric is not a useful indicator of perfor-
mance improvements with RABBIT since calling the entire
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RABBIT

Fig. 3: SpMV run time (normalized to Ideal) with RABBIT: RABBIT offers close to ideal performance for high-insularity
matrices (on the right) where the community sizes are also typically small. For low-insularity matrices (on the left), the average
communities are larger in size and RABBIT is unable to offer close to ideal SpMV performance for these matrices.

matrix a single community maximizes insularity but does not
provide any benefits from a cache locality or performance
perspective. However, for other matrices besides mawi, the
Pearson correlation between insularity and average community
size normalized to the number of nodes is -0.472, meaning that
higher insularity is correlated with smaller community sizes.
High insularity is an indicator of achieving peak performance
with RABBIT (Figure 3).

RABBIT is less effective at optimizing SpMV’s perfor-
mance for low-insularity matrices. Low insularity implies that
the community assignment produced by RABBIT results in a
large number of inter-community links. The most likely cause
for low insularity is the power-law degree distribution where
highly connected hub vertices make it difficult to find good
community assignments with few links crossing community
boundaries. To confirm this hypothesis, we calculated the
correlation between insularity and the skew in the degree
distribution. We define skew as the percentage of non-zeros
connected to the top 10% most connected rows, with high
skew values indicating a stronger power-law behavior where
the hub vertices are even more disproportionately connected
to the rest of the graph. For matrices with insularity ≥ 0.95,
the average skew was 16.37% meaning that the top 10% most
connected rows account for only 16.37% of all non-zeros. For
the remaining matrices (insularity < 0.95), the average skew
was 41.74%. The Pearson correlation between insularity and
skew for matrices was -0.721 which confirms our hypothesis
that hub nodes with disproportionately high connectivity im-
pede the ability of RABBIT’s community detection algorithm
to form good-quality, isolated communities.

In the next section, we use these two findings (the impor-
tance of high insularity and skew in the degree distribution in
explaining performance achieved with RABBIT) to develop
an enhanced version of RABBIT.

VI. MODIFYING RABBIT TO IMPROVE PERFORMANCE

Based on the analysis in the previous section, we propose an
enhanced version of RABBIT (called RABBIT++) that brings
the SpMV kernel closer to peak performance. We first build
the intuition for RABBIT++ and then, using cache simulations,
show that RABBIT++ achieves close to optimal locality on the
NVIDIA A6000 GPU. Finally, we show that RABBIT++ is a
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Fig. 4: Percentage of insular nodes in matrices: Even for
low insularity matrices (on the left), a large fraction of the
nodes are only referenced from within their community.

versatile and low-overhead matrix reordering technique that
can improve performance in many different settings.

A. Design space of RABBIT modifications

While low insularity matrices do not achieve peak perfor-
mance with RABBIT, this does not mean that community
structure is entirely absent from these matrices. Even low
insularity matrices may have strong community structure but
it may be restricted to a subset of the matrix. To illustrate
this point, we measure the number of insular nodes (i.e.
nodes that are only connected to other nodes in their own
community). Figure 4 shows the percentage of insular nodes
for each matrix. As expected, high insularity matrices are
almost entirely composed of insular nodes. However, even for
low insularity matrices, a substantial portion of the matrix is
insular, indicating the presence of some community structure.

To make the best use of the community structure in low
insularity matrices, our first modification to RABBIT is to
group all the insular nodes together. Specifically, for the
first modification, we visit every node in the matrix and
determine whether or not it is an insular node. Next, we
group the vertex IDs for insular and non-insular nodes while
maintaining RABBIT’s relative ordering for both the types of
nodes (Figure 5). Grouping insular nodes is akin to removing
all nodes that contribute to inter-community traffic from each
community. Compared to the RABBIT ordered matrix, the
average community size drops by 27% (41% for matrices
with Insularity < 0.95) for the insular portion of matrices
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Fig. 5: Modifications applied to RABBIT.

TABLE II: Design space of RABBIT modifications: SpMV
run time (normalized to ideal) when applying different com-
binations of RABBIT modifications (Figure 5).

Without Insular Nodes Grouped With Insular Nodes Grouped
ALL-MATS INS <0.95 INS >= 0.95 ALL-MATS INS <0.95 INS >= 0.95

RABBIT 1.54× 1.81× 1.25× 1.49× 1.70× 1.25×
RABBIT+HUBSORT 1.63× 1.89× 1.35× 1.57× 1.86× 1.26×
RABBIT+HUBGROUP 1.48× 1.65× 1.29× 1.46× 1.65× 1.25×

after the first modification is applied (Figure 5). Consequently,
the DRAM traffic for SpMV on just the insular sub-matrix
(evaluated by masking all non-zeros that do not connect to
insular nodes) is very close to compulsory traffic2 (Figure 6).

Grouping insular nodes alone is insufficient. We also need
to find a good ordering for the non-insular nodes in the matrix
because they can constitute a non-trivial portion of the matrix
and account for a large percentage of the matrix’s non-zeros
(especially for low insularity matrices). In Section V-B, we
saw that low insularity matrices have a very skewed degree
distribution. Prior work [2], [17], [43] observed that graphs
with skewed degree distributions benefit from ordering the
highly-accessed hub nodes (typically defined as nodes with
degree greater than the average degree of the graph) with
contiguous IDs. Ordering the hubs contiguously ensures that
the highly-accessed hub nodes are mapped across the smallest
number of cache lines, which improves both spatial and
temporal locality. For example, in Figure 5, as the matrix
has 9 rows with 28 non-zeros, there are two hub nodes with
degree greater than the average degree (3). With only the first
modification applied to RABBIT, the hub nodes are assigned
IDs 0 and 2, which could be mapped to different cache lines
depending on the line size. However, applying the second
modification (of grouping hub nodes) to RABBIT assigns the
hub nodes IDs 0 and 1 which makes it very likely that the
highly-reused nodes would be placed on the same cache line.

The two modifications described in Figure 5 reveal a design
space for potential RABBIT++ solutions. We can choose
whether or not to group insular nodes and/or use different
options for contiguously ordering the hub nodes. Specifically,
we evaluate two options for contiguously ordering hub nodes:
HUBSORT (i.e. ordering hub in decreasing order of their in-
degrees) and HUBGROUP (i.e. simply grouping the hub nodes

2The wiki-Talk matrix achieves lower than ideal traffic because 93% of
its rows are empty, causing us to overestimate the ideal traffic (Section IV-B).
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Fig. 6: Normalized DRAM traffic for the insular sub-
matrix: When insular nodes are grouped after applying the
first modification to RABBIT (Figure 5), the insular portion of
the matrix achieves ideal traffic. (y-axis values start from 0.7).

maintaining the same relative ordering among hubs as in RAB-
BIT). Table II compares the normalized run time (relative to
ideal) for the SpMV kernel on RABBIT ordered matrices and
5 other matrix orderings derived from different combinations
of the two modifications in Figure 5. The result shows that
simply grouping insular nodes (i.e. applying only the first
modification) in RABBIT improves performance, particularly
for the low-insularity matrices (defined as Insularity < 0.95).
Grouping insular nodes is especially important to ensure
good performance for high-insularity matrices (Insularity ≥
0.95) when the hub nodes are ordered contiguously with
RABBIT+HUBSORT or RABBIT+HUBGROUP. Prior work
has shown that ordering hub nodes in decreasing order of
degrees is an effective reordering technique when the matrix is
in ORIGINAL or RANDOM order [2], [3], [43]. However, we
find that RABBIT+HUBSORT consistently increases the run
time compared to RABBIT which suggests that there is some
community structure even among the hub nodes. By main-
taining the same relative ordering among hubs as discovered
by RABBIT, RABBIT+HUBGROUP is able to preserve this
community structure and improve performance over RABBIT.
Across the different combinations of RABBIT modifications,
grouping insular and hub nodes brings the kernel run time
closest to hardware limits. Thus our RABBIT++ solution starts
with RABBIT ordered matrices and modifies them by first
grouping the insular nodes and then grouping the hub nodes.

While Table II shows aggregate performance results, Fig-
ure 7 shows the reduction in DRAM Traffic for the SpMV
kernel achieved with RABBIT++ for individual matrices.
RABBIT++ provides a maximum DRAM traffic reduction of
1.56× over RABBIT and a mean traffic reduction of 4.1%.
Across low-insularity matrices (insularity < 0.95), RABBIT++
provides a mean traffic reduction of 7.7% compared to RAB-
BIT. The DRAM traffic improvements with RABBIT++ trans-
late into a maximum speedup of 1.57× over RABBIT (with
a mean speedup of 5.3% across all inputs and 9.7% across
inputs with insularity < 0.95). Locality and performance
improvements of RABBIT++ over RABBIT are a function of
both the percentage of insular nodes in the matrix as well
as the reduction in the cache footprint of hub nodes. For
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Fig. 7: Reduction in SpMV’s DRAM traffic with RAB-
BIT++: In the interest of space, we only include results for
matrices with Insularity < 0.95). For matrices with Insularity
≥ 0.95, RABBIT++’s DRAM traffic is within 1% of RABBIT.

TABLE III: Effect of matrix reordering on the average %
of dead lines inserted into the cache for the SpMV kernel.

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT RABBIT++
63.31% 25.08% 26.88% 25.23% 17.73% 22.25% 16.37%

example, the highest DRAM traffic improvements in Figure 7
are achieved for the sx-stackoverflow matrix which
has 47.74% insular nodes. Grouping insular nodes provides
perfect locality for 47.74% of the sx-stackoverflow
matrix (Figure 6). Among the remaining non-insular nodes,
sx-stackoverflow has 446K hubs which are sparsely
distributed across multiple cache lines with RABBIT. After
grouping the hub nodes, RABBIT++ shrinks the cache foot-
print from 5.5MB to 1.7MB which significantly improves
locality. Across all the reordering techniques evaluated (Fig-
ure 2), RABBIT++ brings the DRAM traffic and performance
of cuSPARSE’s SpMV kernel closest to hardware limits, at
1.22× the compulsory DRAM traffic and 1.46× the ideal run
time on the NVIDIA A6000 GPU.

B. Cache Locality Analysis of RABBIT++

To better understand how RABBIT++ achieves the best
locality for the SpMV kernel, we built a cache simulator
to model the L2 cache of the A6000 GPU (Table I). We
validated the DRAM traffic reported by our simulator for the
SpMV kernel and found that the numbers reported are within
4% of the real-GPU numbers collected using NVIDIA Nsight
Compute [37]. Based on cache simulation across all matrices
and matrix reordering techniques, one of the primary reasons
why RABBIT++ offers the lowest DRAM traffic is because it
reduces waste of the available L2 cache capacity. Specifically,
as Table III shows, RABBIT++ reduces the percentage of
“dead” lines [18], [25] (i.e. cache lines which are brought
into the cache but never reused). By reducing the percentage
of dead lines, RABBIT++ makes the best use of the scarce L2
cache capacity available.

To quantify the additional headroom for improvements over
RABBIT++, we compared the DRAM traffic achieved by
our cache model for the A6000 GPU with an L2 cache

RANDOM ORIGINAL INDEGSORT INDBG GORDER RABBIT RABBIT++
Matrix Orders
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Fig. 8: Headroom for additional DRAM Traffic reduction:
Among all the matrix reordering techniques, DRAM traffic of
SpMV on a RABBIT++ ordered matrix is closest to the DRAM
traffic achieved with Belady’s optimal replacement policy.

with Belady’s optimal cache replacement policy. Belady’s
replacement policy is an idealized, oracular policy that makes
the best cache replacement decisions by looking at future
reuse of contents in the cache. Figure 8 compares the DRAM
traffic (normalized to compulsory traffic) achieved by an L2
cache with LRU replacement policy (which closely models
A6000’s L2 cache) with the traffic achieved by an idealized
L2 cache equipped with Belady’s optimal cache replacement
policy [8]. The result show that, across matrix reordering
techniques, the idealized L2 cache further reduces DRAM
traffic compared to the L2 cache with LRU replacement.
However, the gap between Belady’s and LRU replacement
policy is the smallest for RABBIT++ (7.6%). While estimating
the optimal matrix reordering is NP-hard [41], the limited gap
between DRAM traffic with realistic and idealized L2 caches
suggests that RABBIT++ is providing close to the best cache
locality achievable for the SpMV kernel on the A6000 GPU.

C. Pre-processing costs of RABBIT++

In this work, we focused on developing the best matrix
reordering technique that can bring the performance of sparse
linear algebra kernels on a broad range of matrices closest
to hardware limits. The pre-processing overhead of matrix
reordering is not a critical cost because it can be amortized
across multiple iterations of the same kernel on the reordered
input and/or multiple kernels running on the same reordered
matrix (Table IV). Figure 9 shows the pre-processing time for
GORDER, RABBIT, and RABBIT++. The result shows that
while GORDER is an effective matrix reordering technique
(Figure 2), the reordering costs of GORDER scale poorly
as the matrix size increases. If we consider matrices to be
in the RANDOM order at the beginning, then GORDER
requires 7467 iterations (on average) of cuSPARSE’s SpMV
kernel to amortize the pre-processing cost of generating a
new matrix order with GORDER. In contrast, RABBIT and
RABBIT++ both incur significantly lower reordering costs.
RABBIT amortizes its pre-processing costs in 741 SpMV
iterations while RABBIT++ (which adds a small additional
pre-processing overhead on top of RABBIT) requires 1047
iterations to amortize its pre-processing overhead.
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Fig. 9: Matrix reordering time as the matrix size increases:
Compared to GORDER, both RABBIT and RABBIT++ are
more practical matrix reordering solutions.

TABLE IV: Run time (normalized to ideal) across different
cuSPARSE kernels: RABBIT++ consistently improves upon
RABBIT’s ability to bring kernels closer to peak performance.

SpMV-COO SpMM-CSR-4 SpMM-CSR-256
ALL I <0.95 I >= 0.95 ALL I <0.95 I >= 0.95 ALL I <0.95 I >= 0.95

RANDOM 5.37× 4.94× 5.97× 29.33× 32.17× 26.07× 139.3× 196.6× 75.13×
ORIGINAL 1.84× 2.1× 1.55× 5.97× 8.92× 3.58× 26.81× 43.79× 10.99×
RABBIT 1.49× 1.73× 1.23× 4.31× 7.39× 2.18× 20.32× 50.3× 3.91×
RABBIT++ 1.4× 1.55× 1.23× 3.79× 5.85× 2.18× 18.7× 43.97× 3.95×

D. Effectiveness on other cuSPARSE kernels

Our results show the effectiveness of matrix reordering
techniques on improving the locality and performance of the
SpMV kernel when the sparse matrix is stored in the CSR
format. However, a major appeal of matrix reordering is that
it can be easily applied to many sparse linear algebra kernels.
We evaluated RABBIT++’s effectiveness across cuSPARSE’s
SpMV kernel when the matrix is stored in the Coordinates
(COO) format. We also evaluated it on cuSPARSE SpMM
(Sparse Matrix multiplied by a dense matrix) kernel for two
different dense matrix dimensions, |N | x 4 and |N | x 256
where |N | is the number of rows/columns of the sparse matrix.
Table IV shows the execution time for these three kernels
across a several different matrix orders. As with the SpMV
results (Table II), the execution times are normalized to the
ideal execution time where the compulsory traffic is updated
according to the kernel. The results show that across matrices
of different insularities, RABBIT++ is consistently better than
RABBIT, regardless of the compressed representation (SpMV-
COO and SpMV-CSR from Table II) or the dimensions of the
sparse problem (SpMM on |N | x 4 dense matrices as well
as |N | x 256 matrices). Finally, in addition to RABBIT++
generalizing to other irregular kernels on GPUs, we also
expect RABBIT++ to be equally effective in achieving peak
performance on other platforms such as multi-core CPUs and
heterogeneous systems.

VII. RELATED WORK

In addition to the related work discussed in Section IV, we
present three other categories of related work:
Community-based matrix reordering: RABBIT uses a
modularity-maximization based community detection algo-
rithm. Prior work has proposed many community-based matrix

reordering techniques using other types of community detec-
tion algorithms such as nested dissection [29], layered label
propagation [10], shingle [12], and slashburn [31]. RABBIT
was shown to either match or outperform the these other
community-based matrix reordering techniques in addition to
incurring low pre-processing overheads [1]. While we focused
on RABBIT as our main matrix reordering technique and
proposed improvements to it (RABBIT++), we believe the
insights of grouping insular and hub nodes should extend
to community-based reordering in general as well as matrix
reordering techniques based on graph partitioning [24], [39]
Analysis of matrix reordering: Barik et al. [5] performed
an extensive analysis of multiple reordering techniques and
proposed various “gap” measures to estimate the quality of
reordering solutions. They also study the performance im-
plications of different reordering techniques on CPU-based
graph analytics. Esfahani et al. [16] performed a detailed
analysis of the locality benefits offered by slashburn, RABBIT,
and GORDER. The authors proposed metrics to estimate the
spatial locality improvements offered by the three reordering
techniques and provided useful recommendations for improv-
ing each technique. However, neither work quantified the
remaining headroom for additional performance improvement
after matrix reordering. Therefore, our work is complimentary
to these prior analyses of graph reordering techniques.
Tiling/blocking optimizations: Poor cache locality of sparse
linear algebra and graph analytics kernels has prompted the
development of many software-based cache locality optimiza-
tions. Tiling optimizations [21], [38], [40], [43] typically
divide the matrix into smaller sub-matrices (also stored using
compressed formats) so as to reduce the range of irregular
accesses (Algorithm 1). Blocking optimizations [7], [11], [20],
[26] distribute the irregular updates across many bins to make
the access stream more regular. While these optimizations
offer significant locality and performance improvements, they
require modifying the application. In contrast, matrix re-
ordering techniques are completely pre-processing based and,
therefore, a more versatile optimization. Finally, RABBIT++
can potentially improve the efficiency of tiling and blocking
optimizations; we leave this exploration to future work.

VIII. CONCLUSION

We presented two methodological improvements in the
evaluation of matrix reordering techniques in this work. First,
we follow a well-defined, bias-free selection process to curate
our pool of input matrices (Section III). Second, we compared
the performance of sparse linear algebra kernels against the
hardware limits of our evaluation platform. Using the above
evaluation methodology across 50 large input matrices, we
observed that community-based matrix reordering (RABBIT)
is already quite an effective reordering technique. We analyzed
the shortcomings of RABBIT and proposed an enhanced
version of RABBIT that bring sparse linear algebra kernels
closer to peak performance on our GPU. Our insights and con-
tributions are also likely to extend to other compute platforms
and we plan to explore this in future work.
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