
Combining Duplication & Reordering to
Accelerate Parallel Graph Processing

Vignesh Balaji Brandon Lucia

Graph Processing Has Many Important Applications

2

Path Planning Social network analysis Recommender systems

Graph Convolutional Networks Data Mining

Large Graphs Can Be Processed in a Single Node

3

Cores 8 - 64

Memory (100s GB - TBs)

Large Graphs Can Be Processed in a Single Node

4

Uncompressed Facebook
Friend Graph is ~1.5TB

Cores 8 - 64

Memory (100s GB - TBs)

Large Graphs Can Be Processed in a Single Node

5
For Graphs that fit in main memory, single node graph processing is more efficient

[1] “Scalability! But at what COST?” Usenix HOTOS’15

Cores 8 - 64

Memory (100s GB - TBs) Uncompressed Facebook
Friend Graph is ~1.5TB

Outline

6

❖ Single-node Graph Processing is Sub-optimal

❖ Existing Optimizations have Overheads

❖ RADAR: Combining the Benefits of Duplication and Reordering

❖ Advantages of RADAR over Push-Pull Direction Switching

Outline

7

❖ Single-node Graph Processing is Sub-optimal ⇦
➢ Expensive Atomic Updates ⇒ Coherence & serialization overheads
➢ Poor LLC locality ⇒ DRAM accesses dominate runtime

❖ Existing Optimizations have Overheads

❖ RADAR: Combining the Benefits of Duplication and Reordering

❖ Advantages of RADAR over Push-Pull Direction Switching

Shared-memory Graph Processing Overview

8

Offsets Array (OA)

Coordinates Array (CA)

Shared-memory Graph Processing Overview

9

Shared-memory Graph Processing Overview

10

for src in Frontier:
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Vertex Centric Graph Processing (Push)

The Need for Atomic Updates

11

for src in Frontier:
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Vertex Centric Graph Processing (Push)

parallel_for src in Frontier:
for dst in out_neigh(src):

atomic {vtxData[dst] += auxData[src]}

The Need for Atomic Updates

12

for src in Frontier:
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Vertex Centric Graph Processing (Push)

parallel_for src in Frontier:
for dst in out_neigh(src):

atomic {vtxData[dst] += auxData[src]}

Tid i

Tid j

Bottleneck #1: Atomic Updates Hurt Performance

13

Bottleneck #1: Atomic Updates Hurt Performance

14

Source of Poor Locality ⇒ Irregular Memory Accesses

15

Vertex Centric Graph Processing (Push)

for src in Frontier:
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

16

Vertex Centric Graph Processing (Push)

for src in Frontier:
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Source of Poor Locality ⇒ Irregular Memory Accesses

17

Vertex Centric Graph Processing (Push)

for src in Frontier:
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Irregular Memory
Accesses

Source of Poor Locality ⇒ Irregular Memory Accesses

18

Vertex Centric Graph Processing (Push)

for src in Frontier:
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Irregular Memory
Accesses

Size of vtxData ~ 200MB

Size of Typical LLCs ~ 32MB

Source of Poor Locality ⇒ Irregular Memory Accesses

Bottleneck #2: Graph Applications are DRAM-latency bound

19

Problem: Poor LLC locality ⇒ Many long-latency DRAM accesses

Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)

Outline

20

❖ Single-node Graph Processing is Sub-optimal ✔
➢ Expensive Atomic Updates ⇒ Coherence & serialization overheads
➢ Poor LLC locality ⇒ DRAM accesses dominate runtime

❖ Existing Optimizations incur Overheads

❖ RADAR: Combining the Benefits of Duplication and Reordering

❖ Advantages of RADAR over Push-Pull Direction Switching

Outline

21

❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations incur Overheads ⇦
➢ Duplication incurs Hub Identification Overhead
➢ Reordering incurs False Sharing Overhead

❖ RADAR: Combining the Benefits of Duplication and Reordering

❖ Advantages of RADAR over Push-Pull Direction Switching

Optimizations for Eliminating Performance Bottlenecks

22

❖ Data Duplication : Improves Scalability

❖ Graph Reordering : Reduces DRAM accesses

BUT

❖ Duplication incurs Hub Identification Overhead

❖ Reordering incurs False Sharing Overhead

Optimization #1: Data Duplication

23

vtxData

parallel_for src in Frontier:
 for dst in neigh(src):
 atomic {vtxData[dst] +=

 auxData[src]}

Optimization #1: Data Duplication

24

parallel_for src in Frontier:
 for dst in neigh(src):
 atomic {vtxData[dst] +=

 auxData[src]}

vtxData

parallel_for src in Frontier:
 for dst in neigh(src):
 vtxDataDup[tid][dst] +=

 auxData[src]

vtxData

vtxDataDup[0] vtxDataDup[N]

Tid 0 Tid N

. . .

Naive Duplication Imposes High Memory Overhead

25

vtxData

25
vtxDataDup[0] vtxDataDup[N]

Tid 0 Tid N

. . .

For a graph with 64M vertices, 4B / vtx, 16 threads

Memory footprint after Duplication = 4GB!

Power-Law Graphs Allow Memory-Efficient Duplication

26

Hubs Air Traffic Network

Power-Law Graphs Allow Memory-Efficient Duplication

27

vtxData

Hubs

Duplicate only the Hub Vertex Data

Hubs Air Traffic Network

Majority of Atomic Updates are to
Hub Vertices

HUBDUP: Duplication for Power-Law Graphs

28

vtxData

Hubs

LocalCopies[0]

Thread 0

LocalCopies[N]

Thread N

. . .

HUBDUP: Duplication for Power-Law Graphs

29

vtxData

Thread 0 Thread N

. . .

Hubs

LocalCopies[0] LocalCopies[N]

Is dst a
hub?

Update (vtxData[dst])

Update vtxData[dst] with
atomics

N

1. Find index into local copy
2. Update local copy without

atomics
Y

HUBDUP Incurs Overheads

30

30

Is dst a
hub?

Update (vtxData[dst])

Update vtxData[dst] with
atomics

N

1. Find index into local copy
2. Update local copy without

atomics
Y

HUBDUP Incurs Overheads

31

31

Is dst a
hub?

Update (vtxData[dst])

Update vtxData[dst] with
atomics

N

1. Find index into local copy
2. Update local copy without

atomics
Y1

Overhead #1: Identifying Hub Vertices

vtxData

Hubs

isHub?Vertex ID True/False

HUBDUP Incurs Overheads

32

32

Is dst a
hub?

Update (vtxData[dst])

Update vtxData[dst] with
atomics

N

1. Find index into local copy
2. Update local copy without

atomics
Y

2

32

Overhead #2: Indexing into thread-local copies
vtxData

Map

LocalCopies[k]Map(Hub) Vertex ID
Local
Index

Summary Of Overheads In HUBDUP

33

isHub?Vertex ID True/False

Map(Hub) Vertex ID
Local
Index

Overhead #1:
Hub Identification

Overhead #2:
Local-Copy Indexing

Summary Of Overheads In HUBDUP

34

isHub?Vertex ID True/False

Map(Hub) Vertex ID
Local
Index

Overhead #1:
Hub Identification

Overhead #2:
Local-Copy Indexing

Problem: Hubs can have arbitrary vertex IDs

Optimizations for eliminating performance bottlenecks

35

❖ Data Duplication : Improves Scalability ✔

❖ Graph Reordering : Reduces DRAM accesses

BUT

❖ HUBDUP incurs Hub Identification Overhead ✔

❖ Reordering incurs False Sharing Overhead

Optimization #2: Graph Reordering

36

Irregular accesses & Large working set
🔰

poor spatial & temporal locality

vtxData

Hubs

Optimization #2: Graph Reordering

37

vtxData

Hubs

Re-assign vertex IDs
based on degrees

vtxData

Hubs

Degree Sorting

Optimization #2: Graph Reordering

38

vtxData

Hubs

Re-assign vertex IDs
based on degrees

vtxData

Hubs

Degree Sorting

Hub 0 Hub 1 Hub N. . .

Cache Line

Spatial Locality ⬆
Temporal Locality ⬆

Degree Sorting Is Effective For Serial Graph Processing

39

Degree Sorting Introduces False Sharing

40

vtxData

Re-assign vertex IDs
based on degrees

vtxData

Degree Sorting

Hub 0 Hub 1 Hub N. . .

Cache Line

Hubs Hubs

Degree Sorting Introduces False Sharing

41

vtxData

Re-assign vertex IDs
based on degrees

vtxData

Degree Sorting

Hub 0 Hub 1 Hub N. . .

Cache Line

Hubs Hubs

Coherence operates on
cache-line granularity

Degree Sorting Introduces False Sharing

42

vtxData

Re-assign vertex IDs
based on degrees

vtxData

Degree Sorting

Hub 0 Hub 1 Hub N. . .

Cache Line

Hubs Hubs

Coherence operates on
cache-line granularity

Tid i Tid j

False Sharing Hurts Performance

43

`

Optimizations for eliminating performance bottlenecks

44

❖ Data Duplication : Improves Scalability ✔

❖ Graph Reordering : Reduces DRAM accesses ✔

BUT

❖ HUBDUP incurs Hub Identification Overhead ✔

❖ Reordering incurs False Sharing Overhead ✔

Summary of Duplication And Reordering

45

H

H` H` H`

HUBDUP Degree Sorting

No Atomics for Hub Vertices

Overhead of identifying Hubs

Improves Cache Locality

Introduces False Sharing

Outline

46

❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔
➢ Duplication incurs Hub Identification Overhead
➢ Reordering incurs False Sharing Overhead

❖ RADAR: Combining the Benefits of Duplication and Reordering

❖ Advantages of RADAR over Push-Pull Direction Switching

Outline

47

❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔

❖ RADAR: Combining the Benefits of Duplication and Reordering ⇦
➢ HUBDUP & Degree Sorting are Mutually Enabling
➢ RADAR = HUBDUP + Degree Sorting
➢ RADAR outperforms HUBDUP & Degree Sorting

❖ Advantages of RADAR over Push-Pull Direction Switching

HUBDUP And Degree Sorting Are Mutually Enabling

48

vtxData

LocalCopies[0]

Thread 0

LocalCopies[N]

Thread N

. . .
DegSort HUBDUP

Improves

Improves

Degree Sorting Improves HUBDUP

49

Ovhd #1:
Hub Identification

Ovhd #2:
Local-Copy
Indexing

isHub?Vtx ID
True/
False

Map(Hub)
Vtx ID

Local
Index

vtxData

Hubs

Degree Sorting Improves HUBDUP

50vtxData

isHub?Vtx ID
True/
False

Map(Hub)
Vtx ID

Local
Index

Ovhd #1:
Hub Identification

Ovhd #2:
Local-Copy
Indexing

Hubs

vtxData

Hubs

vtxID <
threshVtx ID

True/
False

=(Hub)
Vtx ID

Local
Index

HUBDUP Improves Degree Sorting

51

vtxData

Hubs

LocalCopies[0] LocalCopies[N]

Tid 0 Tid N

. . .

HUBDUP Improves Degree Sorting

52

vtxData

Hubs

LocalCopies[0] LocalCopies[N]

Tid 0 Tid N

. . .

Threads update a private copies of hubs ⇒ No False Sharing

Reordering Assisted Duplication/Duplication Assisted Reordering

53

H

H` H` H`

HUBDUP Degree Sorting

No Atomics for Hub Vertices
Costs incurred for detecting Hubs

Improves Cache Locality
Introduces False Sharing

RADAR
No Atomics for Hub Vertices (with easy hub detection)

Improves Cache Locality (without false-sharing for hubs)

Outline

54

❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔

❖ RADAR: Combining the Benefits of Duplication and Reordering
➢ HUBDUP & Degree Sorting are Mutually Enabling
➢ RADAR = HUBDUP + Degree Sorting
➢ RADAR outperforms HUBDUP & Degree Sorting ⇦

❖ Advantages of RADAR over Push-Pull Direction Switching

Evaluation Space

55

Push (Baseline)

H

H` H` H`

+ HUBDUP + Degree Sorting + RADAR

Systems:

Applications:

PageRank &
PageRank-Delta

Triangle Listing Betweenness
Centrality

BFS Graph
Radius

Input Graphs:

Evaluation Platform

56

❖ 28 Cores / 56 Threads across 2 socket ⇒ All versions run with 56 threads

❖ 35MB LLC per socket ⇒ Hubs selected to fit LLC

❖ 64GB DRAM

RADAR Outperforms Both HUBDUP And Degree Sorting

57

8.2x

Geo-Mean Speedup
across all graphs

RADAR Outperforms Both HUBDUP And Degree Sorting

58

8.2x

RADAR Outperforms Both HUBDUP And Degree Sorting

59

8.2x
Already Optimized with
Test-and-Test-and-Set

Outline

60

❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔

❖ RADAR: Combining the Benefits of Duplication and Reordering ✔
➢ HUBDUP & Degree Sorting are Mutually Enabling
➢ RADAR = HUBDUP + Degree Sorting
➢ RADAR outperforms HUBDUP & Degree Sorting

❖ Advantages of RADAR over Push-Pull Direction Switching

Outline

61

❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔

❖ RADAR: Combining the Benefits of Duplication and Reordering ✔

❖ Advantages of RADAR over Push-Pull Direction Switching ⇦
➢ RADAR does not compromise work-efficiency
➢ RADAR can support larger input graphs
➢ RADAR incurs lower preprocessing overheads

State Of The Art: Push-Pull Direction Switching

62

Push

parallel_for src in Frontier:
 for dst in out_neigh(src):
 atomic {vtxData[dst] += auxData[src]}

parallel_for dst in G:
 for src in in_neigh(dst):
 if src in Frontier:

 vtxData[dst] += auxData[src]

Pull

State Of The Art: Push-Pull Direction Switching

63

Push

Pull

Pull phase trade-off ⇒ work efficiency vs eliminating atomic updates

parallel_for src in Frontier:
 for dst in out_neigh(src):
 atomic {vtxData[dst] += auxData[src]}

parallel_for dst in G:
 for src in in_neigh(dst):
 if src in Frontier:

 vtxData[dst] += auxData[src]

Advantages of RADAR over Push-Pull

64

Push-Pull Direction Switching RADAR

Work-Efficiency Work-inefficient No change

Memory Footprint 2X (outCSR + inCSR) ~1X (reordered outCSR)

Preprocessing Cost O(E.logE) O(V.logV + E)

Performance Of RADAR Compared To Push-Pull

65

8.2x
Geo-Mean Speedup

across all graphs

Performance Of RADAR Compared To Push-Pull

66

8.2x

Performance Of RADAR Compared To Push-Pull

67

8.2x Algorithms
favoring Push-Pull

Performance Of RADAR Compared To Push-Pull

68

8.2x Optimized
with
T&T&S

RADAR Can Support Larger Input Graphs

69

Push-Pull increases memory footprint by 2x

RADAR Can Support Larger Input Graphs

70

9.6x

Push-Pull increases memory footprint by 2x

Outline

71

❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔

❖ RADAR: Combining the Benefits of Duplication and Reordering ✔

❖ Advantages of RADAR over Push-Pull Direction Switching ✔
➢ RADAR does not compromise work-efficiency
➢ RADAR can support larger input graphs
➢ RADAR incurs lower preprocessing overheads

Conclusions

72

❖ Single-node Graph Processing Performance is Sub-optimal

❖ HUBDUP and Degree Sorting optimizations incur overheads

❖ RADAR offers the best of HUBDUP & Degree Sorting without their overheads

❖ RADAR has many advantages over the state-of-the-art Push-Pull optimization

Conclusions

73

❖ Single-node Graph Processing Performance is Sub-optimal

❖ HUBDUP and Degree Sorting optimizations incur overheads

❖ RADAR offers the best of HUBDUP & Degree Sorting without their overheads

❖ RADAR has many advantages over the state-of-the-art Push-Pull optimization

https://github.com/CMUAbstract/RADAR-Graph

Thank You!

74

Combining Duplication & Reordering to
Accelerate Parallel Graph Processing

 Vignesh Balaji Brandon Lucia
 vigneshb@andrew.cmu.edu blucia@andrew.cmu.edu

https://github.com/CMUAbstract/RADAR-Graph

Conclusions

76

❖ Single-node Graph Processing Performance is Sub-optimal

❖ HUBDUP and Degree Sorting optimizations incur overheads

❖ RADAR offers the best of HUBDUP & Degree Sorting without their overheads

❖ RADAR has many advantages over the state-of-the-art Push-Pull optimization

https://github.com/CMUAbstract/RADAR-Graph

Backup Slides

77

Importance of sizing hubs to LLC size

78

All Results for RADAR v/s HUBDUP & DegSort

79

All Results for RADAR v/s Push-Pull

80

RADAR is invariant to Graph Order

81

Push-Pull is better for BC

82

RADAR Imposes Lower Preprocessing Overhead

83

All Systems require some form of preprocessing over input file (outCSR):

❖ HUBDUP: Populate bitvector, map, and inv_map
❖ Degree-Sorting/RADAR: Reorder input graph by decreasing degrees
❖ Push-Pull: Construct the inCSR of the graph

HUBDUP RADAR Push-Pull

0.17s 3.93s 9.08

