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Graph Processing Has Many Important Applications
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Path Planning Social network analysis Recommender systems

Graph Convolutional Networks Data Mining



Large Graphs Can Be Processed in a Single Node  
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Cores 8 - 64

Memory (100s GB - TBs)



Large Graphs Can Be Processed in a Single Node  
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Uncompressed Facebook 
Friend Graph is ~1.5TB

Cores 8 - 64

Memory (100s GB - TBs) 



Large Graphs Can Be Processed in a Single Node  

5
For Graphs that fit in main memory, single node graph processing is more efficient

[1] “Scalability! But at what COST?” Usenix HOTOS’15

Cores 8 - 64 

Memory (100s GB - TBs) Uncompressed Facebook 
Friend Graph is ~1.5TB



Outline
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❖ Single-node Graph Processing is Sub-optimal 

❖ Existing Optimizations have Overheads 

❖ RADAR: Combining the Benefits of Duplication and Reordering

❖ Advantages of RADAR over Push-Pull Direction Switching



Outline
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❖ Single-node Graph Processing is Sub-optimal ⇦ 
➢ Expensive Atomic Updates ⇒ Coherence & serialization overheads
➢ Poor LLC locality ⇒ DRAM accesses dominate runtime

❖ Existing Optimizations have Overheads 

❖ RADAR: Combining the Benefits of Duplication and Reordering

❖ Advantages of RADAR over Push-Pull Direction Switching



Shared-memory Graph Processing Overview
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Offsets Array (OA)

Coordinates Array (CA)



Shared-memory Graph Processing Overview
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Shared-memory Graph Processing Overview
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for src in Frontier: 
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Vertex Centric Graph Processing (Push)



The Need for Atomic Updates
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for src in Frontier: 
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Vertex Centric Graph Processing (Push)

parallel_for src in Frontier: 
for dst in out_neigh(src):

atomic {vtxData[dst] += auxData[src]}



The Need for Atomic Updates
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for src in Frontier: 
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Vertex Centric Graph Processing (Push)

parallel_for src in Frontier: 
for dst in out_neigh(src):

atomic {vtxData[dst] += auxData[src]}

Tid i

Tid j



Bottleneck #1: Atomic Updates Hurt Performance
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Bottleneck #1: Atomic Updates Hurt Performance
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Source of Poor Locality ⇒ Irregular Memory Accesses
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Vertex Centric Graph Processing (Push)

for src in Frontier: 
for dst in out_neigh(src):

vtxData[dst] += auxData[src]
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Vertex Centric Graph Processing (Push)

for src in Frontier: 
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Source of Poor Locality ⇒ Irregular Memory Accesses
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Vertex Centric Graph Processing (Push)

for src in Frontier: 
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Irregular Memory 
Accesses

Source of Poor Locality ⇒ Irregular Memory Accesses
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Vertex Centric Graph Processing (Push)

for src in Frontier: 
for dst in out_neigh(src):

vtxData[dst] += auxData[src]

Irregular Memory 
Accesses

Size of vtxData ~ 200MB

Size of Typical LLCs ~ 32MB

Source of Poor Locality ⇒ Irregular Memory Accesses



Bottleneck #2: Graph Applications are DRAM-latency bound
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Problem: Poor LLC locality ⇒ Many long-latency DRAM accesses

Cycles stalled on DRAM / Total CyclesLLC Miss Rate (%)
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❖ Single-node Graph Processing is Sub-optimal ✔
➢ Expensive Atomic Updates ⇒ Coherence & serialization overheads
➢ Poor LLC locality ⇒ DRAM accesses dominate runtime

❖ Existing Optimizations incur Overheads 

❖ RADAR: Combining the Benefits of Duplication and Reordering

❖ Advantages of RADAR over Push-Pull Direction Switching
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❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations incur Overheads ⇦
➢ Duplication incurs Hub Identification Overhead
➢ Reordering incurs False Sharing Overhead 

❖ RADAR: Combining the Benefits of Duplication and Reordering

❖ Advantages of RADAR over Push-Pull Direction Switching



Optimizations for Eliminating Performance Bottlenecks
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❖ Data Duplication    : Improves Scalability 

❖ Graph Reordering   : Reduces DRAM accesses

BUT

❖ Duplication incurs Hub Identification Overhead

❖ Reordering incurs False Sharing Overhead

 



Optimization #1: Data Duplication
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vtxData

parallel_for src in Frontier: 
  for dst in neigh(src):
    atomic {vtxData[dst] += 

  auxData[src]}



Optimization #1: Data Duplication
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parallel_for src in Frontier: 
  for dst in neigh(src):
    atomic {vtxData[dst] += 

  auxData[src]}

vtxData

parallel_for src in Frontier: 
  for dst in neigh(src):
    vtxDataDup[tid][dst] += 

  auxData[src]

vtxData

vtxDataDup[0] vtxDataDup[N]

Tid 0 Tid N

. . . 



Naive Duplication Imposes High Memory Overhead
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vtxData

25
vtxDataDup[0] vtxDataDup[N]

Tid 0 Tid N

. . . 

For a graph with 64M vertices, 4B / vtx, 16 threads

Memory footprint after Duplication = 4GB!



Power-Law Graphs Allow Memory-Efficient Duplication
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Hubs Air Traffic Network



Power-Law Graphs Allow Memory-Efficient Duplication
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vtxData

Hubs

Duplicate only the Hub Vertex Data

Hubs Air Traffic Network

Majority of Atomic Updates are to 
Hub Vertices



HUBDUP: Duplication for Power-Law Graphs
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vtxData

Hubs

LocalCopies[0]

Thread 0

LocalCopies[N]

Thread N

. . . 



HUBDUP: Duplication for Power-Law Graphs
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vtxData

Thread 0 Thread N

. . . 

Hubs

LocalCopies[0] LocalCopies[N]

Is dst a 
hub?

Update (vtxData[dst])

Update vtxData[dst] with 
atomics

N

1. Find index into local copy
2. Update local copy without 

atomics
Y



HUBDUP Incurs Overheads
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30

Is dst a 
hub?

Update (vtxData[dst])

Update vtxData[dst] with 
atomics

N

1. Find index into local copy
2. Update local copy without 

atomics
Y



HUBDUP Incurs Overheads
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31

Is dst a 
hub?

Update (vtxData[dst])

Update vtxData[dst] with 
atomics

N

1. Find index into local copy
2. Update local copy without 

atomics
Y1

Overhead #1: Identifying Hub Vertices

vtxData

Hubs

isHub?Vertex ID True/False



HUBDUP Incurs Overheads
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32

Is dst a 
hub?

Update (vtxData[dst])

Update vtxData[dst] with 
atomics

N

1. Find index into local copy
2. Update local copy without 

atomics
Y

2

32

Overhead #2: Indexing into thread-local copies
vtxData

Map

LocalCopies[k]Map(Hub) Vertex ID
Local 
Index



Summary Of Overheads In HUBDUP

33

isHub?Vertex ID True/False

Map(Hub) Vertex ID
Local 
Index

Overhead #1:
Hub Identification 

Overhead #2:
Local-Copy Indexing 



Summary Of Overheads In HUBDUP
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isHub?Vertex ID True/False

Map(Hub) Vertex ID
Local 
Index

Overhead #1:
Hub Identification 

Overhead #2:
Local-Copy Indexing 

Problem: Hubs can have arbitrary vertex IDs



Optimizations for eliminating performance bottlenecks
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❖ Data Duplication    : Improves Scalability ✔ 

❖ Graph Reordering   : Reduces DRAM accesses

BUT

❖ HUBDUP incurs Hub Identification Overhead ✔

❖ Reordering incurs False Sharing Overhead

 



Optimization #2: Graph Reordering
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Irregular accesses & Large working set 
🔰

poor spatial & temporal locality

vtxData

Hubs



Optimization #2: Graph Reordering
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vtxData

Hubs

Re-assign vertex IDs 
based on degrees

vtxData

Hubs

Degree Sorting



Optimization #2: Graph Reordering
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vtxData

Hubs

Re-assign vertex IDs 
based on degrees

vtxData

Hubs

Degree Sorting

Hub 0 Hub 1 Hub N. . .

Cache Line

Spatial Locality     ⬆
Temporal Locality ⬆



Degree Sorting Is Effective For Serial Graph Processing 
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Degree Sorting Introduces False Sharing
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vtxData

Re-assign vertex IDs 
based on degrees

vtxData

Degree Sorting

Hub 0 Hub 1 Hub N. . .

Cache Line

Hubs Hubs



Degree Sorting Introduces False Sharing
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vtxData

Re-assign vertex IDs 
based on degrees

vtxData

Degree Sorting

Hub 0 Hub 1 Hub N. . .

Cache Line

Hubs Hubs

Coherence operates on 
cache-line granularity



Degree Sorting Introduces False Sharing
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vtxData

Re-assign vertex IDs 
based on degrees

vtxData

Degree Sorting

Hub 0 Hub 1 Hub N. . .

Cache Line

Hubs Hubs

Coherence operates on 
cache-line granularity

Tid i Tid j



False Sharing Hurts Performance
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`



Optimizations for eliminating performance bottlenecks
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❖ Data Duplication    : Improves Scalability ✔ 

❖ Graph Reordering   : Reduces DRAM accesses  ✔

BUT

❖ HUBDUP incurs Hub Identification Overhead ✔

❖ Reordering incurs False Sharing Overhead ✔

 



Summary of Duplication And Reordering
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H

H` H` H`

HUBDUP Degree Sorting

No Atomics for Hub Vertices

Overhead of identifying Hubs

Improves Cache Locality

Introduces False Sharing



Outline
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❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔
➢ Duplication incurs Hub Identification Overhead
➢ Reordering incurs False Sharing Overhead 

❖ RADAR: Combining the Benefits of Duplication and Reordering

❖ Advantages of RADAR over Push-Pull Direction Switching
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❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔

❖ RADAR: Combining the Benefits of Duplication and Reordering ⇦
➢ HUBDUP & Degree Sorting are Mutually Enabling
➢ RADAR = HUBDUP + Degree Sorting
➢ RADAR outperforms HUBDUP & Degree Sorting

❖ Advantages of RADAR over Push-Pull Direction Switching



HUBDUP And Degree Sorting Are Mutually Enabling

48

vtxData

LocalCopies[0]

Thread 0

LocalCopies[N]

Thread N

. . . 
DegSort HUBDUP

Improves

Improves



Degree Sorting Improves HUBDUP
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Ovhd #1:
Hub Identification 

Ovhd #2:
Local-Copy 
Indexing 

isHub?Vtx ID
True/
False

Map(Hub) 
Vtx ID

Local 
Index

vtxData

Hubs



Degree Sorting Improves HUBDUP

50vtxData

isHub?Vtx ID
True/
False

Map(Hub) 
Vtx ID

Local 
Index

Ovhd #1:
Hub Identification 

Ovhd #2:
Local-Copy 
Indexing 

Hubs

vtxData

Hubs

vtxID < 
threshVtx ID

True/
False

=(Hub) 
Vtx ID

Local 
Index



HUBDUP Improves Degree Sorting
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vtxData

Hubs

LocalCopies[0] LocalCopies[N]

Tid 0 Tid N

. . . 



HUBDUP Improves Degree Sorting
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vtxData

Hubs

LocalCopies[0] LocalCopies[N]

Tid 0 Tid N

. . . 

Threads update a private copies of hubs ⇒ No False Sharing



Reordering Assisted Duplication/Duplication Assisted Reordering
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H

H` H` H`

HUBDUP Degree Sorting

No Atomics for Hub Vertices
Costs incurred for detecting Hubs

Improves Cache Locality
Introduces False Sharing

RADAR 
No Atomics for Hub Vertices (with easy hub detection)

Improves Cache Locality (without false-sharing for hubs)



Outline
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❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔

❖ RADAR: Combining the Benefits of Duplication and Reordering
➢ HUBDUP & Degree Sorting are Mutually Enabling
➢ RADAR = HUBDUP + Degree Sorting
➢ RADAR outperforms HUBDUP & Degree Sorting ⇦

❖ Advantages of RADAR over Push-Pull Direction Switching



Evaluation Space
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Push (Baseline)

H

H` H` H`

+ HUBDUP + Degree Sorting + RADAR

Systems:

Applications:

PageRank & 
PageRank-Delta

Triangle Listing Betweenness 
Centrality

BFS Graph 
Radius

Input Graphs:



Evaluation Platform
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❖ 28 Cores / 56 Threads across 2 socket ⇒ All versions run with 56 threads

❖ 35MB LLC per socket ⇒ Hubs selected to fit LLC

❖ 64GB DRAM



RADAR Outperforms Both HUBDUP And Degree Sorting

57

8.2x

Geo-Mean Speedup 
across all graphs



RADAR Outperforms Both HUBDUP And Degree Sorting

58

8.2x



RADAR Outperforms Both HUBDUP And Degree Sorting
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8.2x
Already Optimized with 
Test-and-Test-and-Set
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❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔

❖ RADAR: Combining the Benefits of Duplication and Reordering ✔
➢ HUBDUP & Degree Sorting are Mutually Enabling
➢ RADAR = HUBDUP + Degree Sorting
➢ RADAR outperforms HUBDUP & Degree Sorting

❖ Advantages of RADAR over Push-Pull Direction Switching



Outline
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❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔

❖ RADAR: Combining the Benefits of Duplication and Reordering ✔

❖ Advantages of RADAR over Push-Pull Direction Switching ⇦
➢ RADAR does not compromise work-efficiency
➢ RADAR can support larger input graphs
➢ RADAR incurs lower preprocessing overheads



State Of The Art: Push-Pull Direction Switching
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Push

parallel_for src in Frontier: 
  for dst in out_neigh(src):
    atomic {vtxData[dst] += auxData[src]}

parallel_for dst in G: 
  for src in in_neigh(dst):
    if src in Frontier:

   vtxData[dst] += auxData[src]

Pull



State Of The Art: Push-Pull Direction Switching
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Push

Pull

Pull phase trade-off ⇒ work efficiency vs eliminating atomic updates

parallel_for src in Frontier: 
  for dst in out_neigh(src):
    atomic {vtxData[dst] += auxData[src]}

parallel_for dst in G: 
  for src in in_neigh(dst):
    if src in Frontier:

   vtxData[dst] += auxData[src]



Advantages of RADAR over Push-Pull 
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Push-Pull Direction Switching RADAR

Work-Efficiency Work-inefficient No change

Memory Footprint 2X (outCSR + inCSR) ~1X (reordered outCSR)

Preprocessing Cost O(E.logE) O(V.logV + E)



Performance Of RADAR Compared To Push-Pull
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8.2x
Geo-Mean Speedup 

across all graphs



Performance Of RADAR Compared To Push-Pull
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8.2x



Performance Of RADAR Compared To Push-Pull
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8.2x Algorithms 
favoring Push-Pull



Performance Of RADAR Compared To Push-Pull
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8.2x Optimized 
with 
T&T&S



RADAR Can Support Larger Input Graphs
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Push-Pull increases memory footprint by 2x 



RADAR Can Support Larger Input Graphs
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9.6x

Push-Pull increases memory footprint by 2x 
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❖ Single-node Graph Processing is Sub-optimal ✔

❖ Existing Optimizations have Overheads ✔

❖ RADAR: Combining the Benefits of Duplication and Reordering ✔

❖ Advantages of RADAR over Push-Pull Direction Switching ✔
➢ RADAR does not compromise work-efficiency
➢ RADAR can support larger input graphs
➢ RADAR incurs lower preprocessing overheads



Conclusions
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❖ Single-node Graph Processing Performance is Sub-optimal

❖ HUBDUP and Degree Sorting optimizations incur overheads

❖ RADAR offers the best of HUBDUP & Degree Sorting without their overheads 

❖ RADAR has many advantages over the state-of-the-art Push-Pull optimization



Conclusions
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❖ Single-node Graph Processing Performance is Sub-optimal

❖ HUBDUP and Degree Sorting optimizations incur overheads

❖ RADAR offers the best of HUBDUP & Degree Sorting without their overheads 

❖ RADAR has many advantages over the state-of-the-art Push-Pull optimization

https://github.com/CMUAbstract/RADAR-Graph



Thank You!
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Accelerate Parallel Graph Processing

        Vignesh Balaji  Brandon Lucia
     vigneshb@andrew.cmu.edu  blucia@andrew.cmu.edu

https://github.com/CMUAbstract/RADAR-Graph
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❖ Single-node Graph Processing Performance is Sub-optimal

❖ HUBDUP and Degree Sorting optimizations incur overheads

❖ RADAR offers the best of HUBDUP & Degree Sorting without their overheads 

❖ RADAR has many advantages over the state-of-the-art Push-Pull optimization

https://github.com/CMUAbstract/RADAR-Graph



Backup Slides
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Importance of sizing hubs to LLC size
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All Results for RADAR v/s HUBDUP & DegSort
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All Results for RADAR v/s Push-Pull
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RADAR is invariant to Graph Order
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Push-Pull is better for BC
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RADAR Imposes Lower Preprocessing Overhead
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All Systems require some form of preprocessing over input file (outCSR):

❖ HUBDUP: Populate bitvector, map, and inv_map
❖ Degree-Sorting/RADAR: Reorder input graph by decreasing degrees
❖ Push-Pull: Construct the inCSR of the graph

HUBDUP RADAR Push-Pull

0.17s 3.93s 9.08


