
Improving Locality of Irregular Updates with
Hardware Assisted Propagation Blocking

Vignesh Balaji*
NVIDIA

vbalaji@nvidia.com

Brandon Lucia
Carnegie Mellon University

blucia@andrew.cmu.edu

Abstract—Many application domains perform irregular
memory updates. Irregular accesses lead to inefficient use of
conventional cache hierarchies. To make better use of the cache,
we focus on Propagation Blocking (PB), a software-based cache
locality optimization initially designed for graph processing
applications. We make two contributions in this work. First, we
show that PB generalizes beyond graph processing applications
to any application with unordered parallelism and irregular
memory updates. Second, we identify the inefficiencies of a PB
execution on conventional multicore processors and propose
architecture support to further improve the performance gains
from PB. Our proposed architecture, COBRA, optimizes the
PB execution of a range of applications with irregular memory
updates, offering speedups of up to 3.78x compared to PB
(1.74x on average).

Keywords-caches; locality optimization; graph analytics;
sparse linear algebra; irregular workloads

I. INTRODUCTION

Graph processing applications are an important category
of computing workloads with valuable applications in social
network analysis, COVID19 therapeutics discovery, path-
planning, and graph learning [1], [21], [60]. In the past, large
graphs were primarily processed on distributed, datacenter-
scale systems [23], [38], [48]. Recently, increasing main
memory capacities and core counts enable processing graphs
with billions of edges using just a single machine [19], [22],
[34], [56]. Prior work argues that when a graph fits in a single
machine, distributed graph processing is less efficient [41].

High performance, single machine graph processing is chal-
lenging. The characteristic irregular memory access pattern
of graph processing workloads leads to poor cache locality
and an execution time dominated by DRAM latency [8], [11],
[53], [59], [63]. Therefore, cache locality optimizations have
the potential to provide significant performance gains for
graph processing applications. Propagation Blocking [13] is
one such software-based locality optimization that is particu-
larly lucrative because of its low (runtime and programmabil-
ity) overheads. The key insight of Propagation Blocking is
that the order of updates to graph application data does not
affect correctness and, therefore, the irregular updates can be

*Work done when author was at Carnegie Mellon University

reordered to improve cache locality. Propagation Blocking
has been shown to be effective at improving the locality of
a wide range of graph processing workloads [14], [24], [32].

The effectiveness of Propagation Blocking (PB) has
prompted prior work [31], [43], [50], [52] to develop architec-
ture support for improving its efficiency, further increasing
PB’s gains. However, all these PB optimizations rely on
the application’s irregular updates being commutative.While
commutative updates are typical in graph processing work-
loads, many applications perform irregular updates which
do not satisfy the commutativity property, limiting the scope
of existing hardware optimizations for PB. Therefore, the
focus of our work is to develop architecture support for PB
that does not require an application’s irregular updates to be
commutative. Not requiring update commutativity allows us
to extend the benefits of the PB optimization to a broader
range of applications beyond graph processing workloads.

To develop architecture support for the general case of
PB, we focused on identifying the inefficiencies of a PB
execution on conventional multicore processors. PB reorders
an application’s irregular updates to improve cache locality.
To reorder updates, PB breaks an application execution
into two phases – Binning and Accumulate. In the Binning
phase, PB streams through data structures with regular access
patterns (e.g. the graph) but does not directly apply the
irregular updates which span a large range of memory
locations (the primary contributor to poor cache locality).
Instead, PB buffers the irregular updates (key, value pairs) in
bins where each bin only stores updates corresponding to a
smaller subset of memory locations. Next, in the Accumulate
phase, PB processes bins, applying all of a bin’s updates to
the irregularly accessed data before moving to the next bin.
The Accumulate phase achieves good cache locality because
a bin’s updates apply to a small range of memory locations
that fit in cache. However, Binning is a tax paid by PB
for improved locality during Accumulate. Specifically, the
Binning phase imposes two overheads in all PB executions.
First, to buffer irregular updates into bins, the Binning phase
requires executing many additional instructions (including
branches) that impose a high control overhead. Second, the
Binning phase forces all PB executions to make a sub-
optimal choice on the number of bins. The Accumulate

phase achieves the best cache locality when there are a
large number of bins because each bin stores updates to a
very small range of memory locations that can fit in the
on-chip cache closest to the processor. However, Binning
performance is prohibitively expensive with a large number
of bins, leading all PB executions to compromise with fewer
bins than the ideal case. We show that architecture support
can eliminate both the overheads of Binning, allowing PB
executions to avoid the software overheads associated with
binning updates and selecting the ideal number of bins for
maximum cache locality.

We propose COBRA: a set of modifications to the ISA
and the memory hierarchy of a multicore processor to
optimize PB’s Binning phase. Instead of executing additional
instructions to bin updates as in software-based PB, COBRA
introduces simple fixed-function logic in each level’s cache
controllers to efficiently bin updates. COBRA introduces
a single (CISC-like) instruction to offload the binning
computation to fixed function units in each cache level.
COBRA’s architecture extensions eliminate the instruction
overheads of Binning and improve Binning performance when
there are a large number of bins (the ideal operating point for
Accumulate). Furthermore, the COBRA architecture does not
assume commutativity of irregular updates and, hence, serves
as a more general PB optimization that applies to irregular-
update applications beyond just graph analytics. We evaluate
COBRA across a range of graph processing, pre-processing,
integer sorting, and sparse linear algebra kernels showing
a mean speedup of 1.74x over an optimized software PB
implementation and 3.16x over the baseline. In summary, we
make the following contributions in this paper:
• We show that commutativity of irregular updates is not a

necessary condition for PB, allowing PB to apply more
broadly beyond graph analytics (Section III-B).

• We characterize the inefficiencies of software PB on
commodity multicores (Section III-C).

• We present the insight behind the COBRA architecture
(Section IV) and describe its implementation (Sec-
tion V).

• We show COBRA’s effectiveness across a broad range
of kernels and characterize why COBRA works (Sec-
tion VII).

• We compare COBRA (and PB) against state-of-the-art
hardware PB optimization (PHI [43]) and software cache
locality optimization (CSR-Segmenting [63]).

II. BACKGROUND: IRREGULAR UPDATES

The goal of this work is to improve the locality and
performance of applications that perform irregular memory
updates. To provide background, we identify the common
sources of irregular updates in applications and characterize
the poor cache locality resulting from irregular updates.

Sources of Irregularity: A common source of irregular
memory accesses is the input data representation. Graph

analytics and sparse linear algebra applications often analyze
extremely sparse inputs (a typical adjacency matrix is > 99%
sparse [18]). Therefore, compressed formats are essential for
storing the input graph/matrix in memory efficiently. The
popular Compressed Sparse Row (CSR) format offers an
additional benefit of quickly identifying a vertex’s neighbors.
As shown in Figure 1, CSR uses two arrays to represent
outgoing edges (sorted by edge source IDs). The Neighbors
Array (NA) contiguously stores each vertex’s neighbors and
the Offsets Array (OA) stores the starting offset of each
vertex’s neighborhood in the NA. While the CSR (and its
transpose CSC) allow quick access to vertex neighbors, they
can lead to irregular memory accesses. The contents of the
CSR (i.e. NA in Figure 1) are arbitrarily ordered, defined
by the sparsity pattern and the vertex ordering. Therefore,
applications traversing the CSR and accessing a second data
structure based on the indices in the NA perform irregular
memory accesses. Besides data representations, other input
properties such as the distribution of keys for counting
sort [16] can also lead to irregular memory accesses.

0
1

2

3
4

0

2 4 3 1

5 6

3

8 8

0 0

OA

NA

0

1 2

2 3

0

4 6

0

OA

NA 2 0 0

COO	
(EdgeList)

CSC	
(Incoming-neighbors)

CSR	
(Outgoing-neighbors)

0 1
2 0
1 0
0 2
2 3
0 4
0 3

Figure 1: Popular Compressed Representations

Poor Locality of Irregular Updates: Applications with
irregular memory updates suffer from poor cache locality.
Conventional cache hierarchies are designed to optimize
for spatial and temporal locality, both of which are absent
in irregular access patterns. Using hardware performance
counters, we characterized the Last Level Cache (LLC) miss
rates of applications performing irregular memory updates
(methodology in Section VI). Figure 2 shows that a broad
range of applications spanning graph analytics, graph pre-
processing, integer sorting, and sparse linear algebra all
suffer from poor LLC locality because of irregular updates.
Additionally, prior work [7], [9], [11], [63] has showed
that the high LLC miss rates cause graph analytics kernels
to spend up to 80% of their execution time stalled on
DRAM. Therefore, cache locality optimizations are critical
for improving performance of these irregular workloads.

PAGE-
RANK

MULTI-
BFS

DEG-
CNT

NGH-
POP*

COUNT-
SORT*

SPMV TRANSPOSE* PINV* SYMPERM*

Applications

0%
20%
40%
60%
80%

100%

Graph
Analytics

Pre-
Processing

Sparse Linear
Algebra

LLC Miss Rate (%)
COMMUTATIVE UPDATES NON-COMMUTATIVE UPDATES

Figure 2: Locality of irregular updates: Applications with
irregular updates experience a high LLC miss rate.

III. PROPAGATION BLOCKING

Propagation Blocking (PB) has been shown to be an effec-
tive optimization for graph processing workloads [13], [32].
We show that PB applies more broadly to any application
exhibiting unordered parallelism and, therefore, PB gener-
alizes to applications beyond graph analytics. Software PB
incurs fundamental overheads that prevent achieving optimal
performance. This section also identifies the opportunity to
improve PB’s benefits with architecture support.

A. Propagation Blocking High level Overview

Propagation Blocking (PB) was originally developed to
optimize Pagerank [13]. Figure 3 shows an unoptimized
Pagerank execution operating on a CSR input graph. The
Pagerank execution streams in edges and auxiliary data
(auxData), and updates the vtxData array at dstk using
the value auxData[srck]. The stream of indices (dstk) in the
CSR are unordered and span the full range of the graph’s
vertex IDs (Figure 1). Therefore, an unoptimized Pagerank
execution suffers from poor locality because the irregular
update’s working set exceeds the cache capacity.

PB improves cache locality of Pagerank by breaking the
execution into two phases: Binning and Accumulate. During
Binning, the core streams in edges and auxiliary data but the
core does not directly update vtxData elements. Instead,
the core writes the pair of index location and update value
(dstk,auxData[srck]) to one of several bins created by PB.
A bin is a data structure that sequentially stores each update
belonging to a particular range of data elements. Each bin
stores updates for a disjoint range of elements and the union
of all the bin-ranges equals the total number of elements
(i.e. number of vertices in the graph). Once all updates have
been written to bins, PB starts the Accumulate phase. During
Accumulate, the core sequentially accesses each tuple in a bin
before moving to the next bin (Figure 3). Since each bin stores
updates for a small index range, only a part of the vtxData
array is accessed at any point in time which reduces the
range of irregular writes, allowing the bin’s updates to fit in
cache. In this work, we focus on parallel PB which simply
creates per-thread duplicates of all bin structures in Figure 3,
eliminating the need for synchronization during Binning.

B. Applicability of Propagation Blocking

The effectiveness of PB across many graph workloads [13],
[14], [32] has prompted hardware optimizations for PB [31],
[43], [50]. However, these hardware PB optimizations rely
on the application performing commutative updates. Commu-
tative updates allow coalescing multiple updates destined to
the same index, reducing PB’s main memory traffic without
affecting application correctness. However, we find that
commutativity is not necessary to benefit from PB.

We observe that PB applies to non-commutative kernels
as well. Algorithm 1 shows a part of the kernel for building

auxData[src1]

dst2 auxData[src2]

dst1

Range of Random Accesses = |V|

Unoptimized Execution PB (Phase 1) -- Binning

Update
List

Update
List

binID = dstk / BinRange

Coalescing
Buffers

Bins

. . .

. . .

. . .

. . .

 for src in G:
 for dst in G.out_neigh(src):
 vtxData[dst] += auxData[src]

 vtxData[dst1] += auxData[src1]

CSR auxData

 BinRange = G.nodes / |bins|
 for src in G:
 for dst in G.out_neigh(src):
 binID = dst / BinRange
 bins[binID].append(dst, auxData[src])

 for bin in bins:
 for tuple in bin:
 (dst, val) = tuple
 vtxData[dst] += val

 vtxData[dstk] += Vk

Range = |BinRange|

Bins

PB (Phase 2) -- Accumulate

(dstk, Vk) Tuple

Core

Core

Core

Figure 3: High level overview of PB: PB reduces the range
of irregular updates. Note that the Update List exists only
at a logical level and is never physically materialized.

Algorithm 1 Kernel to populate neighbors (Edgelist-to-CSR)

1: offsets← PrefixSum(degrees) . OA in Figure 1
2: par for e in EL do
3: neighs[offsets[e.src]]← e.dst . NA
4: AtomicAdd(offsets[e.src],1)

a CSR from an Edgelist 1. The kernel (henceforth referred
to as Neighbor-Populate) uses a copy of the Offsets
Array (OA) to populate the contents of the Neighbors Array
(NA) in Figure 1. The updates to the offsets array
in Neighbor-Populate (Algorithm 1; line 4) are not
commutative because the order of updates to the offsets
array determines the contents of the NA. Coalescing updates
to the offsets array would break correctness by skipping
elements of the neighs array (NA). Algorithm 2 shows
how PB optimizes the kernel. The Binning phase streams
in edges and assigns each edge to a bin. After Binning
reorganizes edges into bins, Accumulate processes the edges
in each bin, updating offsets and neighs with high
cache locality. The PB optimization is applicable to the
non-commutative Neighbor-Populate kernel because

1Building a graph data structure from an Edgelist is one of three kernels
used by Graph500 [45] to benchmark graph processing supercomputers.

Algorithm 2 PB version of Algorithm 1

1: offsets← PrefixSum(degrees)
2: par for e in EL do . Binning Phase
3: tid← GetThreadID()
4: binID← (e.src/BinRange)
5: bins[tid][binID]← (e.src,e.dst)

6: par for binID in NumBins do . Accumulate Phase
7: for tid in NumThreads do
8: for tuple in bins[tid][binID] do
9: offsetVal← offsets[tuple.src]

10: neighs[offsetVal]← tuple.dst
11: Add(offsets[tuple.src],1)

a vertex’s neighbors can be listed in any order; the non-
commutative updates permit unordered parallelism [27],
[30]. This example shows that the applicability of PB goes
beyond commutative updates: the PB optimization applies
to applications with irregular updates and unordered
parallelism. All the applications listed in Figure 2 can benefit
from PB however not all applications perform commutative
updates and, therefore, not all applications benefit from
existing hardware PB optimizations. The focus of our work
is to develop a general hardware PB optimization that does
not rely on update commutativity, enabling acceleration of a
broader range of applications.

C. Limitations of Propagation Blocking

All PB executions on conventional processors are primarily
limited in two ways: (i) PB must compromise with a sub-
optimal number of bins and (ii) binning updates requires
executing many extra instructions, eroding PB’s gains.

Compromising on the number of bins: The locality of
the Accumulate phase (Figure 3) is highly sensitive to the
number of bins because the range of updates belonging to
a bin (i.e. range of irregular updates) is inversely related to
the number of bins (BinRange = |UniqueIndices|

|Bins|). The Binning
phase is also sensitive to the number of bins. To amortize
the cost of writing to bins, the Binning phase uses cacheline-
sized coalescing buffers for each bin that accumulate updates
to bins and enable coarse granularity writes to bins. Figure 4a
shows the performance of the Binning and Accumulate phases
as the number of bins vary, for the Neighbor-Populate
kernel. Figure 4b shows normalized L1 load misses (broken
into L2, LLC, and DRAM accesses) collected using hardware
performance counters (Section VI). Optimal Accumulate
performance is achieved when there are a large number
of bins because the range of locations modified by a bin’s
updates is reduced to the point that they can fit within the
L1 cache. However, selecting a large number of bins is
not feasible because the Binning phase achieves the worst
performance as all the bins’ coalescing buffers do not fit in the
L1 and L2 caches (Figure 4b). Competing bin requirements by
the Binning and Accumulate phases force all PB executions to
make a compromise and select a medium number of bins (red
dotted line in Figure 4a), leading to sub-optimal performance
in both phases. The architecture mechanism that we design
in Section IV shows how to break PB’s dependence on the
number of bins and get high performance in both phases
without a compromise.

An ideal PB mechanism would use the best number of
bins for each phase – a small number of bins for Binning
and a large number of bins for Accumulate (green dotted
lines in Figure 4a). Figure 5 shows PB’s performance gains
compared to this idealized version of PB (PB-SW-IDEAL).
While this ideal PB variant is unrealizable, the data highlight
the ample headroom for improvement in PB.

256 512 1K 2K 4K 8K 16K 32K
No. of Bins

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

No
rm

al
ize

d
Ti

m
e

BINNING

PB-SW
PB-SW-IDEAL

256 512 1K 2K 4K 8K 16K 32K
No. of Bins

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ti

m
e

ACCUMULATE
PB-SW
PB-SW-IDEAL

(a) Execution time versus number of bins

256 512 1K 2K 4K 8K 16K 32K
No. of Bins

0

20

40

60

80

100

No
rm

. L
1

Ca
ch

e
M

iss
es BINNING

L2
LLC
DRAM

256 512 1K 2K 4K 8K 16K 32K
No. of Bins

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

. L
1

Ca
ch

e
M

iss
es ACCUMULATE

L2
LLC
DRAM

(b) Cache locality versus number of bins

Figure 4: Sensitivity of PB to the number of bins: The
Binning phase achieves better locality with a small number
of bins whereas the Accumulate phase prefers a large number
of bins.

DBP PLD KRON URAND EURO
Graphs

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

Sp
ee

du
p

App - NeighPopulate

BASE PB-SW PB-SW-IDEAL

Figure 5: Ideal performance with Propagation Blocking:
Allowing each phase to operate with the best number of bins
shows the headroom for performance improvement in PB.

Control overheads of Software PB: PB implemented in
software requires executing extra instructions for binning
which degrades instruction level parallelism (ILP) by occu-
pying core resources (e.g., reservation stations, load-store
queue, reorder buffer). We found that PB executes up to
4x more instructions compared to the baseline execution
of Neighbor-Populate. The two inefficiencies of PB –
compromising on the number of bins and instruction overhead
for binning updates – present an opportunity to improve the
performance of PB. In the next section, we discuss our
architecture support for Binning (the dominant phase of PB
as shown in Table I) that eliminates both the inefficiencies
of PB.

APPS → PB Phases ↓ DC NP PR RD IS SPMV PINV TR SP

Medium
No. of Bins

Init 9.91% 5.68% 18.43% 23.75% 5.72% 0.29% 8.6% 14.63% 6.76%
Binning 73% 54.18% 47% 51.78% 44.47% 77.09% 56.11% 48.16% 14.26%
Accumulate 17.09% 40.14% 34.57% 24.47% 49.81% 22.61% 35.28% 37.21% 78.98%

Large
No. of Bins

Init 7.72% 6.01% 13.17% 18.22% 6.95% 0.22% 8.88% 11.96% 6.71%
Binning 86.15% 78.57% 65.52% 71.60% 77.94% 87.46% 64.42% 67.82% 17.1%
Accumulate 6.01% 15.42% 21.32% 10.18% 15.12% 12.32% 26.7% 20.22% 76.19%

Table I: PB execution breakup: Binning dominates a PB
execution both when using a medium no. of bins (which offers
the best overall PB performance) and when using a large
no. of bins (which offers the best Accumulate performance).

IV. OPTIMIZING PB WITH COBRA

The core contribution of this paper is a new system called
COBRA2 that specializes the cache hierarchy to eliminate the
two inefficiencies of PB executions. COBRA’s architecture
extensions are specifically targeted at improving Binning
performance when there are a large number of bins. Since
Accumulate is naturally efficient with a large number of bins,
the improved Binning performance with COBRA allows
achieving performance close to ideal PB (Figure 5).

Inefficiencies of the Binning phase: PB maintains bins
in main memory that each accumulate irregular updates to
disjoint sub-ranges during the Binning phase. Later, bins
are sequentially processed and the updates of each bin are
applied with high cache locality during the Accumulate phase.
The Binning phase uses per-bin, cacheline-sized coalescing
buffers (henceforth referred to as C-Buffers) to amortize the
cost of writing update tuples to in-memory bins. The size of
index and update values determines the number of tuples in a
C-Buffer. When a C-Buffer fills up, the core bulk-transfers all
of the C-Buffer’s tuples into its corresponding bin in memory
and clears the C-Buffer to start collecting tuples again.

The Binning phase has two main sources of inefficiency.
First, Binning suffers poor cache performance when there
are a large number of bins. Figure 6 (left) shows why
Binning performs poorly with many bins in a typical 3-
level cache hierarchy. With a large number of bins, all the
per-bin C-Buffers do not fit in a small cache (e.g., L1),
increasing the average latency of inserting tuples into C-
Buffers. Compounding the problem, increased cache demands
by other program data can displace C-Buffers to lower levels
of cache (e.g., LLC), further increasing access latency. The
second main inefficiency in Binning is that C-Buffers are
managed entirely in software. Extra instructions need to be
executed to write to C-Buffers, detect when a C-Buffer fills,
and bulk-transfer the C-Buffer’s tuples to in-memory bins.

An Architecture for Binning: COBRA optimizes PB by
enabling the selection of a large number of bins that offers
optimal Accumulate performance (Figure 4a) and changing
the operation of the memory hierarchy to make Binning more
efficient with many bins. The key insight of COBRA is to
decouple Binning performance from the number of bins in
memory. Instead of using a single set of software-managed
C-Buffers that can spread across the cache hierarchy, COBRA
introduces a hierarchy of hardware-managed C-Buffers. Each
level of the cache hierarchy has its own set of C-Buffers
with the number of C-Buffers in a level bounded by the
capacity of that level. Therefore, the L1 cache has the fewest
C-Buffers and the Last Level Cache (LLC) has the most
C-Buffers. In contrast to software-PB where a single bin
range maps update tuples to bins (Algorithm 2; Line 4), in
COBRA each cache level has a unique bin range used to

2Since PB is an instance of radix partitioning [13], [54], we named our
system COBRA (Cache Optimized Binning for RAdix partitioning)

Core

Update List

binID = Indexk / BinRange

L1 Cache

L2 Cache

LLC

DRAM Bins

 Propagation Blocking

SW Coalescing Buffers
Other Data Cachelines

COBRA

Update List

L1bufID = Indexk / L1BinRange

X
C-

bu
ffe

rs
 a

cr
os

s
3

le
ve

ls

L2bufID = Indexm / L2BinRange

LLCbufID = Indexn / LLCBinRange

 Y3 >> X
HW Coalescing Buffers

Y1
L1 C-Buffers

Y2
L2 C-Buffers

Y3
LLC C-Buffers

L1BinRange
(RL1)

L2BinRange
(RL2)

LLCBinRange
(RLLC)

Core

Other Data Cachelines

 Y3 > Y2 > Y1

 RLLC < RL2 < RL1

Figure 6: Comparing Binning phases of PB and COBRA:
COBRA maintains a hierarchy of HW-managed C-Buffers to
provide the illusion of a small number of bins for Binning
while actually using a large number of bins for Accumulate.
We do not show bins in DRAM for COBRA (COBRA uses
Y3 bins in DRAM). The per-level bin ranges (RL1,RL2,RLLC)
in COBRA are defined by the input range and cache sizes.

map tuples into one of the level’s C-Buffers. For example,
in Figure 6, the bin range used for mapping tuples into L1
C-Buffers is L1BinRange(RL1) =

|UniqIndices|
|Y1|

while the bin

range for the LLC is LLCBinRange(RLLC) =
|UniqIndices|

|Y3|
.

In COBRA, a core interacts only with the L1 C-Buffers,
writing tuples into one of the Y1 C-Buffers using the
L1BinRange (L1Bu f f erID= Index

RL1
). When an L1 C-Buffer

fills up, COBRA does not transfer its contents directly to an
in-memory bin (as in software PB). Instead, COBRA evicts
the L1 C-Buffer by unpacking its tuples and sending each
tuple to its C-Buffer in the L2 cache. Unlike a traditional
cache eviction where the evicted line is sent to the next cache
level as a whole, during a C-Buffer eviction each tuple in the
filled C-Buffer in level Li may need to be written to a different
C-Buffer in the next cache level (Li+1). COBRA writes each
tuple evicted from the filled L1 C-Buffer into one of Y2
C-Buffers in the L2 cache identified by the L2BinRange
(L2Bu f f erID = EvictedIndex

RL2
). Similarly, when an L2 C-Buffer

fills up, COBRA evicts it from L2 and sends each of its tuples
to one of the Y3 C-Buffers present in the LLC. In COBRA,
the number of bins in memory equals the number of LLC
C-Buffers. Therefore, when finally a LLC C-Buffer fills up,
COBRA transfers all the tuples in the filled LLC C-Buffer to
the corresponding bin in main memory (as in software PB).
During the Binning phase in a COBRA execution, all tuples
generated by the core are inserted into the L1 C-Buffers,
eventually evicted into L2 C-Buffers followed by the LLC
C-Buffers, before finally being written to the bins in memory.

The hierarchical buffering mechanism in COBRA causes
each C-Buffer eviction to scatter tuples across the C-
Buffers of the next cache level. A small number of eviction

buffers between cache levels suffice to hide the latency of
scattering tuples and remove C-Buffer eviction latency off the
critical path (Section V-D). Consequently, for the example
in Figure 6, during the Binning phase the core observes a
latency of inserting tuples into a small number of bins (Y1 C-
Buffers at the L1) while actually operating on a large number
of bins in memory (equal to the Y3 C-Buffers at the LLC).

Besides hierarchical buffering, the COBRA architecture
offers a second major efficiency boost to Binning. COBRA
relies on simple fixed function logic in each cache level’s
controllers to handle C-Buffer management operations (such
as detecting when a C-Buffer fills, and unpacking tuples from
a filled Li C-Buffer and inserting each tuple to an appropriate
Li+1 C-Buffer). COBRA reserves space within each cache
level to pin C-Buffers for the entirety of Binning (Figure 6),
allowing simple logic to determine the unique location of a C-
Buffer within a cache level. Offloading C-Buffer management
to hardware allows COBRA to eliminate the extra instruction
overhead of Binning in software-based PB.

V. ARCHITECTURE SUPPORT FOR COBRA

COBRA’s architecture support for optimizing Binning in
PB include extensions to cache controllers for managing
C-Buffers and buffering to hide C-Buffer eviction latencies.

A. Caches Designed for Binning

COBRA modifies the cache hierarchy in two ways. First,
COBRA uses widely available way-based cache partition-
ing [3] to reserve space for C-Buffers within each cache level,
ensuring that other program data never displace C-Buffers.
Second, COBRA keeps a hierarchy of C-Buffers. Each level
in the cache hierarchy has its own set of C-Buffers bounded
by the level’s capacity. COBRA also uses a unique bin range
for each cache level to map update tuples into one of the
level’s C-Buffers. Practically, a cache level’s bin range must
also be a power of two, which makes binning a tuple cheap
(Line 4 of Algorithm 2 can use a bitshift).

A new instruction – bininit – configures the number
of ways to reserve for C-Buffers at each cache level. The
bininit instruction takes four operands: (1) a cache level
identifier (e.g., L1, L2, or LLC in most systems), (2) number
of ways to reserve for C-Buffers, (3) number of unique
indices in the data namespace (e.g., the number of vertices
in a graph), and (4) tuple size in bytes. A program executes
bininit once for each cache level. bininit first reserves
the specified number of cache ways and then computes the
smallest power-of-two bin range for which C-Buffers fit in
the reserved cache ways. This per-level bin range is stored
in a special register, used later during Binning. Due to the
power-of-two requirement on bin ranges, the C-Buffers may
not use all the reserved ways. So the bininit instruction
saves the number of ways actually used by C-Buffers to allow
other data to reclaim unused ways.

The number of ways to reserve at a cache level depends
on the cache pressure from non-C-Buffer accesses. For our
simulated architecture, we reserve all but one way in each
level of cache except the L2 cache. Due to the presence of
an L2 stream prefetcher, we reserve a single way for L2
C-Buffers to retain cache capacity for prefetched data. Later,
we show that COBRA’s performance is not very sensitive to
the number of ways reserved for C-Buffers (Figure 13b).

B. An ISA Extension for Binning

COBRA introduces a new instruction (binupdate) to im-
prove the efficiency of the Binning phase. The binupdate
instruction replaces all Binning related operations performed
in a baseline software PB execution. The binupdate
instruction takes two operands - an index and a value to be
used to update the data stored at the index. For example, the
Binning phase in Algorithm 2 (lines 3–5) would be replaced
by a single instruction {binupdate e.src e.dst}.
Dedicated hardware in the cache controller identifies the
right C-Buffer for the input tuple and inserts the tuple
(e.src, e.dst) into that C-Buffer.

CBuf	0

CBuf	1

CBuf	2

CBuf	3

CBuf	4

CBuf	5

CBuf	6

CBuf	7

CBuf	8

CBuf	9

CBuf	10

Reserved	Ways

BufID	bits log2(BinRange)

Set	bitsWay	bits
log2(numSets)

Index	ID Update	Val Incoming	Tuple

Figure 7: C-Buffer organization within each cache level:
Each cache level has a unique bin range that is used to map
an incoming tuple into one of the C-Buffers pinned in cache.

To use COBRA, a program first executes the bininit
instruction for each cache level and then starts binning data
using binupdate instructions. A binupdate instruction
uses the index part of its input tuple to find a target L1 C-
Buffer (Figure 7). Since the bin range is a power-of-two, the
lower log2(bin range) bits of the index represent an intra-
bin-range offset and the remaining bits identify the buffer
ID. Reserving ways allows each C-Buffer to have a unique
location within the cache and, hence, the buffer ID further
breaks down into sets bits and way bits, fully determining
the location of the C-Buffer within the cache.

C. Inserting tuples into C-Buffers

COBRA collects update tuples in cacheline-sized C-Buffers.
When a C-Buffer fills up with update tuples, the cache evicts
the C-Buffer line, scattering its tuples into the C-Buffers of
the next level of the memory hierarchy. COBRA adds fixed
function logic at the cache controller to support inserting
an update tuple into a C-Buffer. Normally, a cache uses
the address to identify the bytes to be accessed within a
cache line. A binupdate instruction accesses a cache
line differently, because the C-Buffer that the line contains

is not byte addressable. To insert a tuple into a C-Buffer,
COBRA must determine the tuple’s offset within the C-Buffer
line. COBRA maintains offset counters for each C-Buffer
to explicitly track the offset of the next tuple within each
C-Buffer line, essentially providing append-only access to
C-Buffer lines. To insert a tuple into a C-Buffer, the controller
first reads the offset counter, inserts the tuple at the right
offset within the C-Buffer line, and increments the counter
to point to the location for the next incoming tuple. When a
C-Buffer cache line fills, the counter wraps around to zero.

To store per-C-Buffer offset counters, COBRA repurposes
existing metadata bits associated with the cache lines con-
taining C-Buffers. Repurposing these bits is safe because
a C-Buffer line exists outside the shared-memory address
space (i.e. C-Buffers only reside in the cache hierarchy and
are not present in memory). COBRA can also repurpose
the coherence state bits because C-Buffers are core-private
(software PB already duplicates all bins and C-Buffers across
threads – Algorithm 2). For example, a typical tuple size of
8B (4B for index and value) requires tracking 8 tuples in a
typical 64B cache line. For tracking the 8 tuples within L1
and L2 cache lines, COBRA can repurpose 1bit from PLRU
replacement, 1bit from dirty status bit, and 2bits from the
MESI coherence status bits for a 3-bit offset counter.

D. Handling C-Buffer evictions

As the binupdate instruction fills L1 C-Buffers with
tuples, eventually a L1 C-Buffer fills up and COBRA must
evict its tuples to C-Buffers in the next cache level (L2). When
a C-Buffer fills up, COBRA is responsible for inserting each
tuple in the full buffer into the appropriate C-Buffer in the
next cache level. After an eviction, the C-Buffer is empty
and can service future incoming tuples.

Li	Cache
Eviction
Buffer

Ctr.	.	.

C-Buffer
Full

Li+1 Cache
Cacheline
to	Tuples

T0

T0-Tk
.	.	.

Binning
Engine

T1 T2 Tk

Figure 8: Handling evictions when a C-Buffer fills up:
Eviction buffers hide the latency of evicting tuples.

In a naive implementation, the filled C-Buffer line is evicted
and directly sent to a dedicated hardware unit within the cache
controller called the binning engine. The binning engine
sequentially extracts tuples from an evicted C-Buffer cache
line and serially issues each tuple to the C-Buffers in the
next level of cache. The process of inserting a tuple into
the next cache level’s C-Buffer is exactly the same as a
binupdate instruction inserting tuples into an L1 C-Buffer
(Figure 7). COBRA inserts each evicted tuple into a C-Buffer
in the next cache level using that level’s unique bin range.
Figure 8 shows how COBRA evicts a full C-Buffer. The cache

controller determines when to evict a C-Buffer cache line by
monitoring the line’s offset counter, which is incremented
on each tuple insertion. When the counter wraps around, the
C-Buffer line is at capacity and the controller evicts the line.

In the above naive implementation, COBRA incurs the
full eviction latency to sequentially issue all tuples from a
filled buffer to the C-Buffers in the next level of cache. To
hide the latency of C-Buffer evictions, COBRA uses a set of
first-in/first-out (FIFO) eviction buffers between cache levels.
When a C-Buffer fills, COBRA simply inserts the cache line
containing all of its tuples into the eviction buffer. Later,
the binning engine pulls the cache line from the eviction
buffer, extracts tuples from the line, and inserts the tuples
into next level’s C-Buffers. Accounting for the eviction rate
from each level of cache and the cycle time to serially insert
all the tuples to the next level of cache, Little’s Law [28]
suggests that a 14-entry eviction buffer between L1 and L2
and single entry eviction buffer between L2 and LLC hides
all eviction latency. However, Little’s law assumes steady
state eviction rate and does not account for bursts in evictions,
which may underestimate the eviction buffer size. In a later
section, we refine the Little’s Law estimate using a DES
model that accounts for bursts and the model shows that
a 32-entry eviction buffer between L1 and L2 fully hides
C-Buffer eviction latency (Figure 13a) .

E. Additional implementation details

COBRA manages the LLC differently from L1 and L2
because the LLC is shared among all the cores and evictions
of LLC C-Buffers interact with bins in main memory.
C-Buffers organization in NUCA caches: As Section III
explains, PB creates a per-thread duplicate of bins and C-
Buffers and COBRA exploits the duplication by making the
C-Buffer in each level private to a core. For core-private
caches, most cache space is reserved for the C-Buffers. In
a shared, NUCA LLC that is physically distributed across
cores, COBRA evenly divides NUCA cache banks among
cores. Each core’s LLC C-Buffers use the set of NUCA
banks assigned to that core only. Our simulated architecture
(Section VI) models a typical three-level hierarchy with core-
private the L1 and L2 caches and the LLC is a NUCA
cache with a bank associated with each core. For this cache
hierarchy, the number of LLC C-Buffers for each core is
bounded by the capacity of the core-local NUCA bank.
Evicting from LLC: Eviction of a full LLC C-Buffer moves
buffered updates to a bin in memory, which is unlike a C-
Buffer eviction to the next cache level (Section V-D). The
process of evicting a C-Buffer from the LLC depends on
how COBRA represents bins in memory. COBRA assumes
threads’ bin data are stored sequentially in memory, as
in Figure 9: for each thread, a bin’s tuples are stored
contiguously. The sequential bin organization requires pre-
computing the number of tuples in each bin (for each thread).
Fortunately, to avoid dynamic memory allocation overheads,

a baseline PB execution already precomputes the number of
tuples per bin and encodes it in the BinO f f set array (Init
phase in Table I). With the above organization, each core
can store the base pointer for its thread’s bin data structures
and use per-bin offsets to access each bin. When an LLC C-
Buffer fills up, COBRA writes the buffered tuples to the bin
data structure at the location pointed by BinO f f set[binID].
After an eviction from LLC, the bin offset is incremented
by the number of tuples in the C-Buffer.

Bin	0 Bin	1 Bin	2 .	.	.

BinBasePtr BinOffset[1]

T0 T1 TkBinOffset Tuple	Ctr

LLC	C-Buffer	Cacheline

64B CachelineTag	bits Replacement
Metadata	bits

LLC	program	data	Cacheline

BinOffset[2] BinOffset[3]

Bin	3

. . .

Bin	Data	Structure

Figure 9: Organization of per-thread bins in memory:
BinOffsets are stored in the tag bits of cache lines containing
LLC C-Buffers.

The bin offset pointers do not require any additional
storage. Since the LLC C-Buffers are chosen to fit in a
core’s local NUCA bank, the tag bits for the C-Buffer lines
are unnecessary and can be repurposed to store bin offsets
(BinO f f set[binID]) as shown in Figure 9. Before Binning,
COBRA initializes the starting offsets for each LLC C-
Buffer (in every NUCA bank) in the C-Buffer’s tag entry
using a new ISA instruction that takes a buffer ID and
starting bin offset as operand. At a LLC C-Buffer eviction,
the contents of the LLC C-Buffer line are written to the
memory address computed using the bin offset in line’s
tag entry (BinBasePtr + BinO f f set[binID]). To avoid the
need for address translation, we assume system support
for ensuring matching virtual and physical addresses for
important data structures (e.g. the bin data structure) as
proposed in prior work [26], [43]. After writing the contents
of the full LLC C-Buffer to an in-memory bin, the bin offset
value in the tag is incremented by the number of tuples in
the C-Buffer using fixed function logic and the C-Buffer’s
offset counters are reset to start receiving tuples again.
Flushing the Cache After Binning: In COBRA, all tuples
are inserted by a binupdate instruction into L1 C-Buffers,
later evicted to L2 and LLC C-Buffers, and eventually written
to a bin in main memory. When Binning ends, some tuples
may still be resident in a C-Buffer in cache. Before starting the
next phase of PB (Accumulate), COBRA must ensure that all
remaining tuples in cache end up in in-memory bins. We add
a binflush ISA instruction that signals the end of Binning
and causes each cache level’s controller to serially walk all C-
Buffer cache lines, forcing an eviction if the line is non-empty.
In each core, binflush starts with L1, proceeds to L2 and,
finishes by writing the residual tuples in the local NUCA bank
to memory. The eviction process initiated by binflush

proceeds as described in Sections V-D and V-E, with the
difference that the eviction buffers, binning engine, and bin
offsets update logic must handle partially filled C-Buffers.
The number of tuples remaining in a C-Buffer are identified
with the help of per-C-Buffer offset counters (Figures 8,9).
The binflush instruction is also invoked in case a page
containing per-thread bin data structures is swapped out of
memory. Such premature invocations of binflush can be
avoided by locking critical pages in memory (e.g., using
mlock() in Linux).
Handling virtualization: COBRA extends a commodity
multicore processor to accelerate PB, requiring its extensions
to support virtualization for OS preemption and context
switching. We rely on per-process, way-partitioning (as in
Intel CAT [3]) to reserve space for per-level C-Buffers across
the cache hierarchy. Using static cache partitioning for the
COBRA process ensures that each level’s C-Buffers are
pinned for the duration of the Binning phase of PB. However,
if the COBRA process is preempted during Binning, then
other processes scheduled to run intermediately can evict C-
Buffer cache lines. Evictions triggered by other processes may
lead to transfer of partially-filled C-Buffer cache lines which
reduces the efficiency of data transfer. Fortunately, COBRA’s
architecture extensions significantly optimize Binning phase
latency, allowing Binning to complete with the minimum
number of OS preemptions (Figure 13c).
Need for Static Cache Partitioning: The COBRA architec-
ture described to this point assumes static cache partitioning
at each cache level to reserve space for C-Buffers and ensure
that C-Buffer accesses never miss. COBRA can also work
in architectures lacking support for static cache partitioning.
However, without static cache partitioning, locality of C-
Buffer cache lines is defined by the underlying cache
replacement policy and pressure from other data accesses
during the Binning phase. Fortunately, all other data accesses
besides C-Buffers are streaming accesses (e.g., CSR and
auxData in Figure 3) and do not impose cache pressure
on C-Buffer cache lines. Evaluations on our cache simulator
revealed that the baseline replacement policy (PLRU in L1/L2
and DRRIP in LLC) can provide a C-Buffer miss rate of
<1% in the absence of static cache partitioning.
Hardware overheads of COBRA: COBRA repurposes
cache line metadata whenever possible (Figure 9) and the only
storage overhead incurred by COBRA are the eviction buffers
used to hide C-Buffer eviction latency. However, the small
eviction buffers between cache levels amount for less than
7% of an L1 cache area [44]. Finally, the binning engine and
fixed function logic to update per-C-Buffer counters incur low
complexity because they perform simple integer arithmetic.

VI. EXPERIMENTAL SETUP

Real System: Section II, III & VII-D experiments were run
on an Intel Xeon processor (14 cores, 35MB LLC, 32GB

DRAM) with hyperthreading and “turbo boost” disabled. We
used LIKWID [58] to collect performance counters.
Simulator: We use Sniper [15] to evaluate COBRA. Table II
shows the architecture parameters we simulated, with cache
timing parameters collected from CACTI [44]. We made
several modifications to Sniper. For PB, we added support
for non-temporal stores which are required for efficient
Binning [13], [54]. For COBRA, we model the interaction of
the binupdate instruction with the Out-of-Order engine.
We ensure that a binupdate only retires when it reaches
the head of the ROB because a binupdate writes the data
caches (i.e., like a store). Stores require two ports to issue
(address generation and data), but the binupdate does not
need the address generation port because the L1 C-Buffers
are directly addressed based on operand value. We also use
a custom Pin-based [39] cache simulator for a subset of our
evaluations (Section VII-C). The cache simulator models
the hierarchy in Table II and the LLC statistics from our
simulator are within 5% of Sniper’s values.

Cores 16 OoO-cores, 2.66GHz, 4-wide issue, 128-entry ROB, 48-entry Load Queue,
32-entry Store Queue

L1(D/I) 32KB, 8-way set associative, Bit-PLRU policy, Load-to-use = 3 cycles
L2 256KB, 8-way set associative, Bit-PLRU policy, Load-to-use = 8 cycles
LLC 2MB/core, 16-ways, DRRIP [29], Load-to-use = 21 cycles (local NUCA bank)
NoC 4x4 mesh, 2 cycles hop-latency, 64 bits/cycle link B/W, MESI coherence
DRAM 80ns access latency

Table II: Simulation parameters

Workloads: We evaluate COBRA across workloads
spanning multiple domains. Degree-Counting and
Neighbor-Populate are the dominant kernels in
Edgelist-to-CSR conversion (an important graph prepro-
cessing step that has been shown to be as expensive
as the downstream graph analytics kernel [6], [10], [40],
[51]). Pagerank is a popular kernel representative of
graph applications where all vertices are processed every
iteration. Our Edgelist-to-CSR conversion and Pagerank
implementations are from the GAP [12] benchmark. Radii
from the Ligra [55] benchmark estimates a graph’s diameter
by performing multi-source BFS and is representative of
graph applications which only process a subset of the
vertices every iteration. In addition to graph (pre-)processing
workloads, we also evaluate Integer Sorting. We
use __gnu_parallel::sort() as our baseline sort
implementation because we found it to be up to 14% faster
(2.7% on average) than NAS benchmark’s [5] integer sort
implementation. The PB and COBRA versions optimize
a parallel counting sort implementation [16]. We also
evaluate COBRA across four sparse linear algebra kernels –
SpMV from HPCG [20], and parallelized versions of PINV,
Transpose, and SymPerm from SuiteSparse [17]. PINV
computes the inverse mapping for a given permutation of
a matrix rows/columns. Transpose constructs the sparse
representation of a matrix’s transpose. SymPerm permutes
the upper triangular portion of a matrix and is a subroutine

of Cholesky factorization. We simulate a single iteration of
Pagerank because of its constant runtime across iterations
and we use iteration sampling [43] to simulate every second
pull iteration for Radii.

The workloads have tuple sizes of 4B
(Degree-Counting and Integer Sort), 8B
(Neighbor-Populate, Pagerank), and 16B for
the rest. PB (and COBRA) work for applications performing
irregular update and streaming reads which required slight
modification of Pagerank, Radii, and SpMV (specifically
making the PB versions process the transpose representation
of the input graph/matrix). For the PB runs, we use the
original source code which we received from the authors [13]
and we simulated multiple bin ranges for PB, selecting the
best bin range for each workload and input pair.
Inputs: We evaluate the graph (pre-)processing workloads
across a diverse set of input graphs (covering power-law,
uniform normal, and bounded degree distributions). For
Integer Sort, we sort 256 million randomly generated
keys with varying maximum key values. We use matrices
representative of simulation and optimization problems for
the sparse linear algebra kernels. We do not simulate Radii
on EURO because Radii never executes a pull iteration.

GRAPHS DBP [33] PLD [37] KRON [12] URND [12]EURO [18]
Vertices 18.26M 42.89M 33.55M 33.55M 50.91M
Edges 136.54M 623.06M 133.52M 134.22M 108.11M
MATRICES HBUBL [18] HTRACE [18] KMER [18] DELAUNAY [18]
Rows/Columns 21.12M 16M 67.72 16.78M
NNZs 63.58 48M 138.78M 100.66M

Table III: Input Graphs and Matrices

VII. EVALUATION

We provide a detailed quantitative explanation for CO-
BRA’s speedups and assess COBRA’s composability with
recently proposed commutativity optimizations for PB [43].

A. Speedups with COBRA

The main result of this evaluation is that COBRA consis-
tently improves the performance of PB. COBRA improves
PB performance in two ways – by eliminating the need
to compromise with a sub-optimal number of bins and by
eliminating the instruction overheads associated with Binning.
To isolate the contributions from each optimization, Figure 10
compares speedups from a baseline software-based PB (PB-
SW), PB-SW-Ideal (an idealized PB execution combining
Binning with a small number of bins and Accumulate with
a large number of bins), and COBRA. PB is an effective
software locality optimization offering a mean speedup of
1.81x over the baseline. Eliminating the compromise on
the number of bins (PB-SW-IDEAL) provides an additional
mean speedup of 1.2x over PB. COBRA combines the
benefits of using the optimal number of bins for Accumulate
with the efficiency improvements from offloading C-Buffer

DBP PLD KRON URND EURO GMEAN
Inputs

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

DEGREE-COUNT (DC)

DBP PLD KRON URND EURO GMEAN
Inputs

0.0
2.0
4.0
6.0
8.0

10.0
12.0

Sp
ee

du
p

NEIGHBOR-POPULATE (NP)*

DBP PLD KRON URND EURO GMEAN
Inputs

0.0
0.5
1.0
1.5
2.0

Sp
ee

du
p

PAGERANK (PR)

DBP PLD KRON URND GMEAN
Inputs

0.0
0.5
1.0
1.5
2.0

Sp
ee

du
p

RADII (RD)

225 226 227 GMEAN
Key Ranges

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

Sp
ee

du
p

INTEGER SORT (IS)*

HBUBL HTRACE KMER DELAUNAY GMEAN
Inputs

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

Sp
ee

du
p

SPMV

HBUBL HTRACE KMER DELAUNAY GMEAN
Inputs

0.0
0.5
1.0
1.5
2.0

Sp
ee

du
p

PINV*

HBUBL HTRACE KMER DELAUNAY GMEAN
Inputs

0.0
2.0
4.0
6.0
8.0

10.0
12.0

Sp
ee

du
p

TRANSPOSE (TR)*

HBUBL HTRACE KMER DELAUNAY GMEAN
Inputs

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Sp
ee

du
p

SYMPERM (SP)*

BASE
PB-SW

PB-SW-IDEAL
COBRA

Figure 10: Speedups with COBRA: COBRA provides significant performance gains over PB-SW (and PB-SW-IDEAL)
across a broad set of applications. (* indicates that the application performs non-commutative updates)

management to hardware, allowing COBRA to gain an
additional mean speedups of 1.45x over PB-SW-IDEAL.
In summary, COBRA provides a mean speedups of 1.74x
over PB and 3.16x over the baseline. These COBRA speedup
numbers include the cost of initializing LLC C-Buffers tags
with starting bin offset values and flushing every level’s C-
Buffers after Binning (Section V-E). The numbers in Figure 10
also account for the initialization cost of computing per-thread
bin sizes in both COBRA and PB. The results for PINV
and SymPerm need additional explanations. PINV was the
only application where increasing the number of bins did
not improve Accumulate performance (due to parallelism
artifacts overshadowing locality benefits). Consequently, PB-
SW-IDEAL underperforms PB-SW for PINV and COBRA
offers limited benefits over PB-SW. We ran a version of
COBRA using a medium number of LLC C-Buffers (which
offers the best Accumulate performance for PINV) and
observed that COBRA’s mean performance improvement
increased to 2.4x over the baseline and 1.94x over SW-PB.
SymPerm achieves limited benefit from COBRA because it
only processes coordinates in the upper triangular portion of
the matrix, limiting the headroom for spatial and temporal
locality optimization.

Looking at the speedup for each phase of PB in Figure 11
helps explain COBRA’s performance benefit. A COBRA ex-
ecution optimizes both phases of PB. Compared to software-
PB which much compromise with a sub-optimal number of
bins, COBRA optimizes the Accumulate phase by using a
large number of bins (allowing irregular updates to operate
from faster caches). The Binning phase sees even more
speedup, ranging from 2.2–32x owing to elimination of
extra instructions and offloading the C-Buffer management to
dedicated hardware in the cache controllers. The next section

DC NP PR RD IS SPMV PINV TR SP
Applications

0
2
4
6
8

10
12

Sp
ee

du
p 16x 17x 36x

Binning Phase

DC NP PR RD IS SPMV PINV TR SP
Applications

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Sp
ee

du
p

Accumulate Phase

PB-SW
COBRA

Figure 11: COBRA speedup across both phases of PB:
COBRA uses a large number of bins naturally optimizing
Accumulate and uses architecture support to optimize Binning.

further characterizes COBRA’s improvements to Binning.

B. Characterizing COBRA’s Binning speedups

In this section, we explore the reasons for COBRA’s Bin-
ning speedups and show that COBRA’s Binning performance
is robust to different architecture and system parameters.
Improvements from eliminating instructions: COBRA’s
binupdate instruction replaces all Binning instructions ex-
ecuted in software by PB. Figure 12 (top) shows COBRA’s 2-
5.5× reduction in total instructions executed (averaged across
inputs) compared to software PB. COBRA also reduces PB’s
control overheads during Binning. PB manages C-Buffers
in software: after every tuple insertion the core must check
if a C-Buffer is full. COBRA instead manages C-Buffers
using dedicated hardware in the cache controller, reducing
the rate of branch mispredictions, as Figure 12 (bottom)
shows. COBRA eliminates all branch misses associated with
managing C-Buffers in software, often achieving near-zero

DC NP PR RD IS SPMV PINV TR SP0.0
1.0
2.0
3.0
4.0
5.0

Reduction in Instructions

DC NP PR RD IS SPMV PINV TR SP
Applications

0%
5%

10%
15%

Branch Misprediction Rate (%)
PB-SW COBRA

Figure 12: Efficiency gains from eliminating instruction
overhead of binning: The binupdate instruction in
COBRA enables an OoO core to exploit more ILP.

branch misprediction rates as the baseline versions3. By
reducing the instruction and control overheads of Binning,
COBRA enables an Out-of-Order processor to better exploit
Instruction Level Parallelism (ILP) and we observe that the
Instructions-per-Cycle (IPC) of the Binning phase improves
from 0.71 in PB-SW to 1.55 in COBRA.

2 4 8 16 32 64 128
L1 buffer sizes

0%
10%
20%
30%
40%
50%
60% L1 Eviction Stalls (%)

DBP
PLD

KRON
URAND

EUROPE

(a) Sensitivity to L1 eviction buffer size

1 2 3 4 5 6 7
L1 ways reserved

0.9
1.0
1.1
1.2
1.3

Norm. Exec Time

1 2 3 4 5 6 7
L2 ways reserved

0.9
1.0
1.1
1.2
1.3

Norm. Exec Time

1 3 5 7 9 11 13 15
LLC ways reserved

0.9
1.0
1.1
1.2
1.3

Norm. Exec Time
DC
NP
PR

RD
IS
SPMV

PINV
TR
SP

(b) Sensitivity to ways reserved for C-Buffers

0.1ms 1ms 10ms 100ms (default)
Scheduling Quantum

0%
5%

10%
15%
20%
25%

Binning Phase DRAM BW Waste (%)
DBP
PLD

KRON
URND

EURO

(c) Sensitivity to scheduling quantum

Figure 13: Sensitivity of Binning performance in COBRA

Sensitivity to eviction buffer sizes: COBRA uses eviction
buffers to push C-Buffer eviction latencies off the critical
path. We built a Discrete Event Simulation (DES) model
of COBRA to estimate the eviction buffer sizes required
to handle input-specific eviction bursts. The DES model
consumes a trace of update tuples and reports the fraction
of time stalled on a full eviction buffer. Figure 13a reports
the fraction of Neighbor-Populate execution stalled for
different sizes of eviction buffer between L1 and L2. The
data show that a 32-entry L1 eviction buffer hides eviction
latency for all inputs. Little’s Law estimates that a single-entry

3(Pagerank and Radii still incur branch misses because checking
neighborhood boundaries in power-law graphs leads to unpredictable
branches. SymPerm incurs branch misses when searching for upper
triangular coordinates).

buffer between L2 and LLC suffices because L2 evictions are
infrequent. Overprovisioning the buffer to 8 entries incurs a
modest cost and should suffice to handle rare bursts of L2
evictions [28].
Sensitivity to ways reserved for C-Buffers: We measured
the sensitivity of COBRA’s Binning performance for different
workloads as the number of ways reserved for C-Buffers
is varied (Figure 13b). The result shows robustness of
COBRA’s performance (variation≤10%) to the L1 and LLC
cache ways reserved for C-Buffers because all non-C-Buffer
accesses during Binning are streaming, requiring limited
cache capacity. COBRA’s performance is more sensitive
to the L2 cache ways reserved for C-Buffers because of
the presence of a L2 stream prefetcher which gainfully
uses the additional cache capacity to prefetch streaming
data. Therefore, our default COBRA configuration reserves
a maximum of all but one way in the L1 and LLC and a
single way in the L2 for C-Buffers.
Sensitivity to context switches: COBRA uses static cache
partitioning to pin the C-Buffers in caches during the Binning
phase. However, on a context switch, other processes may
evict (possibly partially-filled) C-Buffer cache lines. Evicting
partially-filled C-Buffer cache lines at the LLC leads to
DRAM bandwidth waste because DRAM is always accessed
at the cache line granularity (64B). To measure the worst-
case bandwidth waste, we built a cache simulator that models
eviction of all the LLC C-Buffers on every context switch.
Figure 13c shows the reduction in bandwidth waste as we vary
the OS scheduling quantum for the Neighbor-Populate
application. The worst-case bandwidth waste is less than 5%
even when the scheduling quantum is 1/100th the default
value used in linux [2]. COBRA’s architecture extensions
provides significant speedups to the Binning phase (8.3x on
average in Figure 11) which reduces the number of context
switches (and the associated bandwidth waste).

C. Specialization for Commutative Updates

The COBRA design described up to this point is
application-agnostic and is primarily a latency optimization
(choosing an optimal number of bins for Accumulate and
using architecture support to accelerate Binning). Applica-
tions with commutative updates can additionally reduce
main memory traffic by coalescing updates destined to
the same index. For commutative applications, PHI [43]
proposed adding simple reduction units (ALU) at private
caches and an atomic reduction unit at the shared LLC to
allow coalescing updates within each cache level. COBRA
can also be specialized with similar reduction units to reduce
main memory traffic for commutative applications. Instead
of simply appending at the end of a C-Buffer, COBRA could
scan all the tuples present in a C-Buffer, checking to see if a
tuple with the update’s index already exists. If a tuple with
that index exists, the new update could be coalesced with
the existing tuple using a local reduction unit. Otherwise,

COBRA appends the new update’s tuple at the end of the
C-Buffer as usual. To reduce the changes required to COBRA,
we propose a commutativity-specialized version of COBRA
(called COBRA-COMM) that performs update coalescing
only at the LLC (where the coalescing opportunity is the
largest). Using an atomic LLC reduction unit, as in PHI,
allows COBRA-COMM to share LLC C-Buffers among cores,
increasing the total number of LLC C-Buffers.

We compare PB (PB-SW), COBRA, COBRA-COMM
and PHI 4 using our custom cache simulator. Figure 14
shows the reduction in DRAM traffic and L1 cache misses
(across Binning and Accumulate phases) under PB-SW, PHI,
COBRA, and COBRA-COMM for the Count-Degrees
and Neighbor-Populate applications. The result re-
veals three interesting trends. First, PHI and COBRA-
COMM are inapplicable for the non-commutative applica-
tions because they would violate correctness (Section III-B).
For non-commutative applications (Neighbor-Populate,
Integer Sort, Transpose, PINV, SymPerm), CO-
BRA is the only viable hardware PB optimization. Second,
for the commutative Count-Degrees application, PHI is
able to provide greater DRAM traffic reduction than COBRA
by hierarchically coalescing updates at each cache level
(Figure 14a). Across all graphs, COBRA-COMM achieves
the same traffic reductions as PHI in spite of only coalescing
updates in LLC C-Buffers because even PHI coalesces a
majority of the updates only at the LLC (97% on average).
Traffic reductions in PHI (and COBRA-COMM) are tied to
the highly skewed graphs and graphs with lower temporal
reuse (URND, EURO, UK2005, HBUBL) see limited benefits
from PHI over COBRA. Third, COBRA consistently reduce
L1 caches misses compared to PHI (Figure 14b). COBRA
minimizes L1 misses by choosing the optimal number of
bins for the Accumulate phase whereas PHI’s L1 miss
reductions are a product of coalescing updates and reducing
the number of tuples to be read from bins. For graphs with low
coalescing opportunity (URND, EURO, UK2005, HBUBL),
the Accumulate phase in PHI suffers from choosing a sub-
optimal number of bins (as in PB-SW) and provides limited
L1 miss reduction over PB-SW.

In summary, COBRA is a more general PB optimization
because it applies to both commutative and non-commutative
applications. With simple modifications, COBRA can be
specialized for commutative updates (COBRA-COMM) to
combine the benefits of update coalescing (achieving similar
traffic reductions as PHI) and choosing the optimal number
of bins for Accumulate (improving L1 locality over PHI).

D. Comparison to Graph Tiling

In this work, we developed architecture support for soft-
ware Propagation Blocking (PB). Another popular software

4We implement PHI’s optimizations (hierarchical buffering/coalescing
and selecting update batching) as described in the paper [43] and model an
idealized version of PHI that incurs zero overheads for managing PB data.

DBP PLD KRON URND EURO UK2005 GPLUS HBUBL GMEAN
Graphs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

DR
AM

 T
ra

ffi
c

(N
or

m
al

ize
d)

COUNT-DEG (Commutative App)
PB-SW (Accumulate)
PB-SW (Binning)

PHI (Accumulate)
PHI (Binning)

COBRA (Accumulate)
COBRA (Binning)

COBRA-COMM (Accumulate)
COBRA-COMM (Binning)

DBP PLD KRON URND EURO UK2005 GPLUS HBUBL GMEAN
Graphs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

DR
AM

 T
ra

ffi
c

(N
or

m
al

ize
d)

X X X X X X X X XX X X X X X X X X

NEIGH-POP (Non-Commutative App)
PB-SW (Accumulate)
PB-SW (Binning)

PHI (Accumulate)
PHI (Binning)

COBRA (Accumulate)
COBRA (Binning)

COBRA-COMM (Accumulate)
COBRA-COMM (Binning)

(a) DRAM Traffic Reduction

DBP PLD KRON URND EURO UK2005 GPLUS HBUBL GMEAN
Graphs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

L1
 C

ac
he

 M
iss

es
(N

or
m

al
ize

d)

COUNT-DEG (Commutative App)
PB-SW (Accumulate)
PB-SW (Binning)

PHI (Accumulate)
PHI (Binning)

COBRA (Accumulate)
COBRA (Binning)

COBRA-COMM (Accumulate)
COBRA-COMM (Binning)

DBP PLD KRON URND EURO UK2005 GPLUS HBUBL GMEAN
Graphs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

L1
 C

ac
he

 M
iss

es
(N

or
m

al
ize

d)

X X X X X X X X XX X X X X X X X X

NEIGH-POP (Non-Commutative App)
PB-SW (Accumulate)
PB-SW (Binning)

PHI (Accumulate)
PHI (Binning)

COBRA (Accumulate)
COBRA (Binning)

COBRA-COMM (Accumulate)
COBRA-COMM (Binning)

(b) L1 Cache Miss Reduction

Figure 14: Comparisons against PHI: PHI and COBRA-
COMM only work for commutative updates

locality optimization is Graph Tiling [51], [57], [62], [63],
[66] where the input graph is divided into ”sub-graphs”
to reduce the range of irregular accesses. To understand
the difference between the PB and Tiling, we compare PB
to CSR-Segmenting [63], [64] (state-of-the-art 1D tiling).
Figure 15 shows the runtime reduction from CSR-Segmenting
(Tiling) and PB for the Pagerank application run until
convergence. The shaded portion in the bars represents the
initialization overheads of Tiling (constructing per-tile CSRs)
and PB (allocating memory for bins). Ignoring overheads, PB
provides a mean speedup of 1.35x compared to 1.27x from
Tiling. However, PB incurs significantly lower initialization
overhead compared to Tiling. Therefore, we selected PB as
the basis for COBRA because PB is able to provide speedups
even after accounting for overheads.

DBP PLD KRON URND EURO HBUBL HTRACE KMER DEL GMEAN
Inputs

0.0
0.5
1.0
1.5
2.0
2.5
3.0

7.5x 5x

Normalized Time
BASE TILING PB

Figure 15: Comparing PB to Tiling: PB is competitive to
Tiling and incurs significantly lower overheads.

VIII. RELATED WORK

PB Optimizations for commutative updates: The
Milk [32] compiler simplifies applying PB to applications.
COBRA could be a target for the Milk compiler, extending
COBRA’s benefits to new applications. GraFBoost [31]
exploits commutativity in PB for out-of-core graph analytics
while COBRA targets in-memory analytics. GraphPulse [50]
extends PB principles to an accelerator targeting asyn-
chronous graph applications. In contrast to these works,
COBRA is a general PB optimization that supports both
commutative and non-commutative updates.
General PB optimizations: PCP [36] and GPOP [35]
introduce new graph representations to reduce Binning’s
memory traffic but they incur higher preprocessing overheads
than PB. Ozdal et al. [46] propose algorithmic changes
to PB to reduce memory footprint. COBRA could support
variations of PB using extensions similar to Section VII-C.
Prior works [54], [65] highlighted the sensitivity of radix
partitioning to the number of bins and demonstrated huge
performance cliffs. COBRA eliminates the need to tune the
number of bins by maintaining a hierarchy of C-Buffers.
Architectures for graph processing: Minnow [61] added
architecture support for efficient worklist management [49].
HATS [42] introduced hardware for online vertex scheduling
to improve locality. OMEGA [4] tailored scratchpad-based
memories to optimize graph analytics on power-law inputs.
Graph processing accelerators [25], [47] optimize common
framework operations. Similar to these works, COBRA
provides architecture support for Binning to optimize PB.

IX. CONCLUSION

We presented COBRA, a general hardware optimization for
Propagation Blocking (PB). With a limited set of architecture
extensions, COBRA is able to eliminate the inefficiencies of
PB executions on conventional processors. COBRA achieves
speedups of up to 3.78x over PB (1.74x on average). Finally,
by not relying on update commutativity, COBRA is able to
target a broader range of workloads beyond graph analytics
(including sparse linear algebra and integer sorting).

ACKNOWLEDGMENT

Thanks to the anonymous reviewers of HPCA22, MI-
CRO21, ASPLOS21, ISCA21, and MICRO20 for their
feedback on different versions of the paper. This work was
supported in part by NSF grant XPS-1629196.

REFERENCES

[1] “Graph-powered Machine Learning at Google,”
https://ai.googleblog.com/2016/10/graph-powered-machine-
learning-at-google.html, accessed: 2019-01-23.

[2] “Linux scheduling,” https://man7.org/linux/man-pages/man2/
sched rr get interval.2.html, accessed: 2021-04-16.

[3] “Intel CAT,” https://github.com/intel/intel-cmt-cat, 2020, [On-
line; accessed 17-April-2020].

[4] A. Addisie, H. Kassa, O. Matthews, and V. Bertacco, “Het-
erogeneous memory subsystem for natural graph analytics,”
in 2018 IEEE International Symposium on Workload Charac-
terization (IISWC), 2018, pp. 134–145.

[5] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber et al., “The nas parallel benchmarks
summary and preliminary results,” in Supercomputing’91:
Proceedings of the 1991 ACM/IEEE conference on Super-
computing. IEEE, 1991, pp. 158–165.

[6] V. Balaji, “Input, representation, and access pattern guided
cache locality optimizations for graph analytics,” Ph.D. dis-
sertation, Carnegie Mellon University, 2021.

[7] V. Balaji, N. Crago, A. Jaleel, and B. Lucia, “P-opt: Practical
optimal cache replacement for graph analytics,” in 2021 IEEE
International Symposium on High-Performance Computer
Architecture (HPCA), 2021, pp. 668–681.

[8] V. Balaji and B. Lucia, “When is graph reordering an optimiza-
tion? studying the effect of lightweight graph reordering across
applications and input graphs,” in 2018 IEEE International
Symposium on Workload Characterization (IISWC), 2018, pp.
203–214.

[9] V. Balaji and B. Lucia, “Combining data duplication and
graph reordering to accelerate parallel graph processing,”
in Proceedings of the 28th International Symposium on
High-Performance Parallel and Distributed Computing,
ser. HPDC ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 133–144. [Online]. Available:
https://doi.org/10.1145/3307681.3326609

[10] V. Balaji and B. Lucia, “Optimizing graph processing and
preprocessing with hardware assisted propagation blocking,”
CoRR, vol. abs/2011.08451, 2020. [Online]. Available:
https://arxiv.org/abs/2011.08451

[11] A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang,
and Y. Xie, “Analysis and optimization of the memory
hierarchy for graph processing workloads,” in 2019 IEEE
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2019, pp. 373–386.

[12] S. Beamer, K. Asanovic, and D. Patterson, “Locality exists in
graph processing: Workload characterization on an ivy bridge
server,” in Workload Characterization (IISWC), 2015 IEEE
International Symposium on. IEEE, 2015, pp. 56–65.

[13] S. Beamer, K. Asanović, and D. Patterson, “Reducing pagerank
communication via propagation blocking,” in Parallel and
Distributed Processing Symposium (IPDPS), 2017 IEEE
International. IEEE, 2017, pp. 820–831.

[14] D. Buono, F. Petrini, F. Checconi, X. Liu, X. Que, C. Long, and
T.-C. Tuan, “Optimizing sparse matrix-vector multiplication
for large-scale data analytics,” in Proceedings of the 2016
International Conference on Supercomputing. ACM, 2016,
p. 37.

https://ai.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html
https://ai.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html
https://man7.org/linux/man-pages/man2/sched_rr_get_interval.2.html
https://man7.org/linux/man-pages/man2/sched_rr_get_interval.2.html
https://github.com/intel/intel-cmt-cat
https://doi.org/10.1145/3307681.3326609
https://arxiv.org/abs/2011.08451

[15] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper:
Exploring the level of abstraction for scalable and accurate
parallel multi-core simulation,” in Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: Association for Computing Machinery, 2011.
[Online]. Available: https://doi.org/10.1145/2063384.2063454

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms. MIT press, 2009.

[17] T. A. Davis, “Algorithm 1000: Suitesparse: Graphblas: Graph
algorithms in the language of sparse linear algebra,” ACM
Transactions on Mathematical Software (TOMS), vol. 45, no. 4,
pp. 1–25, 2019.

[18] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Transactions on Mathematical Software
(TOMS), vol. 38, no. 1, p. 1, 2011.

[19] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically
efficient parallel graph algorithms can be fast and scalable,”
ACM Transactions on Parallel Computing (TOPC), vol. 8,
no. 1, pp. 1–70, 2021.

[20] J. Dongarra, M. A. Heroux, and P. Luszczek, “Hpcg bench-
mark: a new metric for ranking high performance computing
systems,” Knoxville, Tennessee, pp. 1–11, 2015.

[21] D. Easley and J. Kleinberg, Networks, crowds, and markets:
Reasoning about a highly connected world. Cambridge
University Press, 2010.

[22] G. Gill, R. Dathathri, L. Hoang, R. Peri, and K. Pingali,
“Single machine graph analytics on massive datasets using
intel optane dc persistent memory,” Proceedings of the VLDB
Endowment, vol. 13, no. 8, pp. 1304–1318, 2020.

[23] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“Powergraph: Distributed graph-parallel computation on natural
graphs.” in OSDI, vol. 12, no. 1, 2012, p. 2.

[24] Z. Gu, J. Moreira, D. Edelsohn, and A. Azad, “Bandwidth
optimized parallel algorithms for sparse matrix-matrix mul-
tiplication using propagation blocking,” in Proceedings of
the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures, 2020, pp. 293–303.

[25] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient
accelerator for graph analytics,” in Microarchitecture (MICRO),
2016 49th Annual IEEE/ACM International Symposium on.
IEEE, 2016, pp. 1–13.

[26] S. Haria, M. D. Hill, and M. M. Swift, “Devirtualizing memory
in heterogeneous systems,” in Proceedings of the Twenty-
Third International Conference on Architectural Support for
Programming Languages and Operating Systems, 2018, pp.
637–650.

[27] M. A. Hassaan, M. Burtscher, and K. Pingali, “Ordered vs.
unordered: a comparison of parallelism and work-efficiency
in irregular algorithms,” Acm Sigplan Notices, vol. 46, no. 8,
pp. 3–12, 2011.

[28] M. D. Hill, “Three other models of computer system perfor-
mance,” arXiv preprint arXiv:1901.02926, 2019.

[29] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High
performance cache replacement using re-reference interval
prediction (rrip),” ACM SIGARCH Computer Architecture
News, vol. 38, no. 3, pp. 60–71, 2010.

[30] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and
D. Sanchez, “Unlocking ordered parallelism with the swarm
architecture,” IEEE Micro, vol. 36, no. 3, pp. 105–117, 2016.

[31] S.-W. Jun, A. Wright, S. Zhang, S. Xu, and Arvind,
“Grafboost: Using accelerated flash storage for external
graph analytics,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, ser. ISCA
’18. IEEE Press, 2018, p. 411–424. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00042

[32] V. Kiriansky, Y. Zhang, and S. Amarasinghe, “Optimizing
indirect memory references with milk,” in Proceedings of
the 2016 International Conference on Parallel Architectures
and Compilation, ser. PACT ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 299–312.
[Online]. Available: https://doi.org/10.1145/2967938.2967948

[33] J. Kunegis, “Konect: the koblenz network collection,” in
Proceedings of the 22nd International Conference on World
Wide Web. ACM, 2013, pp. 1343–1350.

[34] A. Kyrola, G. E. Blelloch, C. Guestrin et al., “Graphchi: Large-
scale graph computation on just a pc.” in OSDI, vol. 12, 2012,
pp. 31–46.

[35] K. Lakhotia, R. Kannan, S. Pati, and V. Prasanna,
“Gpop: A scalable cache- and memory-efficient framework
for graph processing over parts,” ACM Trans. Parallel
Comput., vol. 7, no. 1, Mar. 2020. [Online]. Available:
https://doi.org/10.1145/3380942

[36] K. Lakhotia, R. Kannan, and V. Prasanna, “Accelerating pager-
ank using partition-centric processing,” in 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18), 2018,
pp. 427–440.

[37] O. Lehmberg, R. Meusel, and C. Bizer, “Graph structure in
the web: aggregated by pay-level domain,” in Proceedings of
the 2014 ACM conference on Web science, 2014, pp. 119–128.

[38] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein, “Distributed graphlab: a framework for
machine learning and data mining in the cloud,” Proceedings
of the VLDB Endowment, vol. 5, no. 8, pp. 716–727, 2012.

[39] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood,
“Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’05. New York,
NY, USA: ACM, 2005, pp. 190–200. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065034

[40] J. Malicevic, B. Lepers, and W. Zwaenepoel, “Everything you
always wanted to know about multicore graph processing but
were afraid to ask,” in 2017 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 17), 2017, pp. 631–643.

https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/ISCA.2018.00042
https://doi.org/10.1145/2967938.2967948
https://doi.org/10.1145/3380942
http://doi.acm.org/10.1145/1065010.1065034

[41] F. McSherry, M. Isard, and D. G. Murray, “Scalability! but at
what cost?” in HotOS, 2015.

[42] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and
D. Sanchez, “Exploiting Locality in Graph Analytics through
Hardware-Accelerated Traversal Scheduling,” in Proceedings
of the 51st annual IEEE/ACM international symposium on
Microarchitecture (MICRO-51), October 2018.

[43] A. Mukkara, N. Beckmann, and D. Sanchez, “Phi: Archi-
tectural support for synchronization-and bandwidth-efficient
commutative scatter updates,” in Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2019, pp. 1009–1022.

[44] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“Cacti 6.0: A tool to model large caches,” HP Laboratories,
pp. 22–31, 2009.

[45] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang,
“Introducing the graph 500,” Cray Users Group (CUG), 2010.

[46] M. M. Ozdal, “Improving efficiency of parallel vertex-centric
algorithms for irregular graphs,” IEEE Transactions on Parallel
and Distributed Systems, vol. 30, no. 10, pp. 2265–2282, 2019.

[47] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns,
and O. Ozturk, “Energy efficient architecture for graph
analytics accelerators,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA).
IEEE, 2016, pp. 166–177.

[48] R. Pearce, M. Gokhale, and N. M. Amato, “Faster parallel
traversal of scale free graphs at extreme scale with vertex
delegates,” in High Performance Computing, Networking,
Storage and Analysis, SC14: International Conference for.
IEEE, 2014, pp. 549–559.

[49] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A.
Hassaan, R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich,
M. Méndez-Lojo et al., “The tao of parallelism in algorithms,”
in ACM Sigplan Notices, vol. 46, no. 6. ACM, 2011, pp.
12–25.

[50] S. Rahman, N. Abu-Ghazaleh, and R. Gupta, “Graphpulse:
An event-driven hardware accelerator for asynchronous graph
processing,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2020, pp.
908–921.

[51] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream:
Edge-centric graph processing using streaming partitions,”
in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles. ACM, 2013, pp. 472–488.

[52] F. Sadi, J. Sweeney, S. McMillan, T. M. Low, J. C. Hoe,
L. Pileggi, and F. Franchetti, “Pagerank acceleration for
large graphs with scalable hardware and two-step spmv,” in
2018 IEEE High Performance extreme Computing Conference
(HPEC). IEEE, 2018, pp. 1–7.

[53] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park,
M. A. Hassaan, S. Sengupta, Z. Yin, and P. Dubey, “Navigating
the maze of graph analytics frameworks using massive
graph datasets,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM,
2014, pp. 979–990.

[54] F. M. Schuhknecht, P. Khanchandani, and J. Dittrich, “On
the surprising difficulty of simple things: the case of radix
partitioning,” Proceedings of the VLDB Endowment, vol. 8,
no. 9, pp. 934–937, 2015.

[55] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph
processing framework for shared memory,” in ACM Sigplan
Notices, vol. 48, no. 8. ACM, 2013, pp. 135–146.

[56] J. Shun, L. Dhulipala, and G. E. Blelloch, “Smaller and faster:
Parallel processing of compressed graphs with ligra+,” in
Data Compression Conference (DCC), 2015. IEEE, 2015,
pp. 403–412.

[57] J. Sun, H. Vandierendonck, and D. S. Nikolopoulos, “Graph-
grind: addressing load imbalance of graph partitioning,” in
Proceedings of the International Conference on Supercomput-
ing. ACM, 2017, p. 16.

[58] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environ-
ments,” in Parallel Processing Workshops (ICPPW), 2010
39th International Conference on. IEEE, 2010, pp. 207–216.

[59] H. Wei, J. X. Yu, C. Lu, and X. Lin, “Speedup graph processing
by graph ordering,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 1813–
1828.

[60] X. Zeng, X. Song, T. Ma, X. Pan, Y. Zhou, Y. Hou, Z. Zhang,
K. Li, G. Karypis, and F. Cheng, “Repurpose open data
to discover therapeutics for covid-19 using deep learning,”
Journal of proteome research, 2020.

[61] D. Zhang, X. Ma, M. Thomson, and D. Chiou, “Minnow:
Lightweight offload engines for worklist management and
worklist-directed prefetching,” in Proceedings of the Twenty-
Third International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM,
2018, pp. 593–607.

[62] K. Zhang, R. Chen, and H. Chen, “Numa-aware graph-
structured analytics,” SIGPLAN Not., vol. 50, no. 8, pp.
183–193, Jan. 2015. [Online]. Available: http://doi.acm.org/
10.1145/2858788.2688507

[63] Y. Zhang, V. Kiriansky, C. Mendis, S. Amarasinghe, and
M. Zaharia, “Making caches work for graph analytics,” in
2017 IEEE International Conference on Big Data (Big Data),
Dec 2017, pp. 293–302.

[64] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and
S. Amarasinghe, “Graphit: a high-performance graph dsl,”
Proceedings of the ACM on Programming Languages, vol. 2,
no. OOPSLA, p. 121, 2018.

[65] Z. Zhang, H. Deshmukh, and J. M. Patel, “Data partitioning
for in-memory systems: Myths, challenges, and opportunities.”
in CIDR, 2019.

[66] X. Zhu, W. Han, and W. Chen, “Gridgraph: Large-scale graph
processing on a single machine using 2-level hierarchical
partitioning.” in USENIX Annual Technical Conference, 2015,
pp. 375–386.

http://doi.acm.org/10.1145/2858788.2688507
http://doi.acm.org/10.1145/2858788.2688507

	Introduction
	Background: Irregular Updates
	Propagation Blocking
	Propagation Blocking High level Overview
	Applicability of Propagation Blocking
	Limitations of Propagation Blocking

	Optimizing PB with COBRA
	Architecture support for COBRA
	Caches Designed for Binning
	An ISA Extension for Binning
	Inserting tuples into C-Buffers
	Handling C-Buffer evictions
	Additional implementation details

	Experimental Setup
	Evaluation
	Speedups with COBRA
	Characterizing COBRA's Binning speedups
	Specialization for Commutative Updates
	Comparison to Graph Tiling

	Related Work
	Conclusion
	References

