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Abstract

Graph analytics has many important commercial and scientific applications ranging from social network

analysis to tracking disease transmission using contact networks. Early works in graph analytics primarily

focused on processing graphs using large-scale distributed systems. More recently, increasing main memory

capacities and core counts have prompted a shift towards analyzing large graphs using just a single machine.

Multiple studies have demonstrated that in-memory graph analytics can even outperform distributed graph

analytics. However, performance of in-memory graph analytics is still far from optimal because the charac-

teristic irregular memory access pattern of graph applications leads to poor cache locality. Irregular memory

accesses are fundamental to graph analytics and are a product of the sparsity pattern of input graphs and the

compressed representation used to store graphs. The main insight of this thesis is that the different sources of

irregularity in graph analytics also contain valuable information that can be used to design cache locality

optimizations. Using this insight, we propose three types of optimizations that each leverage properties

of input graphs, compressed representations, and application access patterns to improve locality of graph

analytics workloads.

First, we present Selective Graph Reordering and RADAR which are cache locality optimizations that

leverage the structural properties of input graphs. Graph reordering uses a graph’s structure to improve the

data layout for graph application data in a bid to improve locality. However, when accounting for overheads,

graph reordering offers questionable benefits; providing speedups for some graphs while causing a net

slowdown in others. To improve the viability of graph reordering, we develop a low-overhead analytical

model to accurately predict the performance improvement from reordering. Our analytical model allows

selective application of graph reordering only for the graphs which are expected to receive high speedups

while avoiding slowdowns for other graphs. RADAR builds upon graph reordering to perform memory-

efficient data duplication for power-law graphs to eliminate expensive atomic updates. Combining graph

reordering with data duplication allows RADAR to simultaneously optimize cache locality and scalability of

parallel graph applications.

Second, we present P-OPT, an optimized cache replacement policy that leverages the popular compressed

representation used in graph analytics – CSR and CSC – to improve locality for graph applications. Our work

is based on the observation that the CSR and CSC efficiently encode information about future accesses of

graph application data, enabling Belady’s optimal cache replacement policy (an oracular policy that represents

the theoretical upper bound in cache replacement). P-OPT is a practical implementation of Belady’s optimal

replacement policy. By using the graph structure to guide near-optimal cache replacement, P-OPT is able to

vii
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significantly reduce cache misses compared to heuristics-based, state-of-the-art replacement policies.

Finally, we present HARP, a hardware-based cache locality optimization that leverages the typical

access pattern of graph analytics workloads. HARP builds upon Propagation Blocking, a software cache

locality optimization targeting applications with irregular memory updates. Due to the pervasiveness of the

irregular memory updates, Propagation Blocking applies to a broader range of workloads beyond just graph

analytics. HARP provides architecture support for Propagation Blocking to eliminate the lingering sources of

inefficiency in a Propagation Blocking execution, allowing HARP to further improve the performance gains

from Propagation Blocking for graph analytics and other irregular memory workloads.
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Chapter 1

Introduction

Graph analytics represents an important category of workloads with many high-value applications. How-

ever, the characteristic irregular memory access pattern of graph analytics workloads leads to sub-optimal

performance on conventional processors. The central goal of this thesis is to present solutions to improve

performance of graph analytics.

1.1 Graph Analytics has Important Applications

Graphs are a fundamental data structure that can represent a diverse set of systems including relationships

between people in a social network, map of roadways connecting cities, hyperlinks between web pages,

and interactions between proteins [56]. Performing analysis on such graphs has immense commercial and

scientific value. The influential PageRank [35] algorithm performs a random walk on the hyperlink graph to

order search results by order of relevance and a variant of PageRank is reportedly still in use at Google [4,74].

Uber reported building a custom routing engine that uses the contraction hierarchies optimization [65] for

solving the shortest-path problem, allowing Uber to provide fast and accurate ETA estimates [5]. Twitter

and Facebook report running random-walk algorithms [101, 113] (in the same family as PageRank) on the

follower/friendship networks to provide user recommendations vital to their business [44, 73]. Ayasdi Inc.

proposed a graph-based visualization tool that enabled identification of a new subgroup of breast cancers [137].

Finally, social network analysis also extends to epidemiology where analyzing contact networks allows

tracking disease transmission [56, 102] and developing focused intervention programs [41, 135].

Beyond traditional graph algorithms [45], there are many novel, emerging applications of graph analytics

1
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as well. Temporal graph analytics involves studying graphs as they evolve over time [42, 78, 114], enabling

applications such as real-time anomaly detection in streaming graphs [57, 58] which is useful for computer

network security. Graph Representation learning is an emerging field concerned with performing machine

learning on graph data [76]. Graph Neural Networks (GNNs) are an effective framework for graph represen-

tation learning and GNNs power applications ranging from link prediction (predicting whether two nodes in

a network are connected) [168] to discovering therapeutics for COVID-19 [170]. Graph analytics also finds

use in genomics in the form of de novo assembly where, in the absence of a reference genome, a genome is

constructed by building and traversing overlap or De Bruijn graphs [66, 67].

The high-value applications mentioned above serve as strong motivation for exploring performance

optimizations for graph analytics. The similarity of graph analytics workloads to other sparse kernels is

another reason to seek high-performance graph analytics. It has long been known that graph algorithms

can be expressed as sparse linear algebra primitives with the recent graphBLAS efforts focused on bringing

the benefits of sparse linear algebra optimizations to graph analytics [49, 94, 95]. Also, graph analytics is

routinely performed on extremely sparse inputs (vertices in a typical graph are only connected to ∼16 other

vertices). The high sparsity requires graph analytics workloads to use compressed representations similar to

sparse tensor kernels [155]. Therefore, performance optimizations developed for graph analytics have the

potential to accelerate a broader range of applications.

1.2 The Case for In-memory Graph Analytics

Real-world graphs representing social networks, web crawls, and transportation networks can contain millions

to billions of vertices and edges. Therefore, the fundamental challenge in graph analytics is the need to

handle large real-world graphs. Prior graph analytics systems have taken one of two routes to efficiently

analyze large graphs – distributed graph analytics or out-of-core graph analytics.

Distributed Graph Analytics: A popular approach to handling large graphs is to distribute the graph

computation across multiple compute nodes. There exist many different distributed graph processing frame-

works each targeting different programming models. Pregel [122] was among the earliest distributed graph

processing frameworks which brought a MapReduce-style programming model to graph analytics. In

Pregel, programmers write "vertex-programs" (computation to occur at each vertex) and then messages to

neighboring vertices are exchanged in a Bulk Synchronous manner. To improve convergence, distributed
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frameworks like GraphLab [118] and Vertex Delegates [143] support asynchronous graph execution. Beyond

bulk synchronous and asynchronous execution models, the Powergraph [72] and Powerlyra [40] frameworks

specialize for power-law input graphs 1 which are common in the real-world. While the distributed frame-

works discussed so far target multi-core CPUs, graph computation can also be distributed across multiple

GPUs. Distributed graph processing is critical for GPUs because of the limited memory capacity available

within a single GPU. Frameworks such as Lux [89], multi-GPU Gunrock [141], D-IrGL [87] aim to bring the

throughput advantages of GPUs to larger graphs that do not fit within a single GPU. There has also been

recent effort on developing communication substrates that can transparently distribute shared-memory graph

analytics systems across distributed, heterogeneous (CPUs and GPUs) compute nodes [47, 48].

The primary challenge in distributed graph analytics is to reduce communication between compute nodes.

Instead of randomly dividing the input graph across compute nodes, careful partitioning of the graph is

required for reducing expensive accesses to remote compute nodes [40, 72, 87]. Unfortunately, power-law

input graphs (which are common in the real-world) are hard to partition effectively [109,116]. Prior work has

also shown that the best partitioning strategy can vary with the application, input, and number of compute

nodes [69]. Therefore, while distributed graph analytics allows scaling to large graphs, selecting the right

partitioning strategy is a critical challenge for efficient distributed graph analytics.

Out-of-core Graph Analytics: A second approach to handling large graphs is to rely on dense secondary

storage devices. In out-of-core graph analytics systems, the graph is typically divided into smaller chunks

and stored in secondary storage. During execution, a chunk of the graph is first loaded from disk to memory,

where the graph chunk is processed and then later written back to disk before moving on the next chunk.

GraphChi [105] was the earliest out-of-core graph analytics system, where the authors were able to show that

a single (Mac Mini) PC with SSD is could provide competitive performance to distributed graph processing

on a cluster. X-Stream [149] and Flashgraph [181] are semi-external out-of-core systems where all the

random accesses (to vertex data) are restricted to main memory and all edge data is sequentially accessed

from secondary storage. In contrast, GridGraph [183] and BigSparse [91] are fully-external out-of-core

systems which relax the requirement to store all the vertex data in main memory, enabling analytics on

much larger graphs. Mosaic [121] combined the benefits of fast storage media (NVMe SSDs) and massively

parallel coprocessors (Xeon Phi) to push the boundary of out-of-core graph analytics by processing a trillion

1Power-law input graphs have a few vertices with a disproportionately higher connectivity than the rest of the graph (for eg.
celebrity accounts in twitter receive significantly higher following than accounts of most users).
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edge graph on a single machine. While out-of-core systems are traditionally single-node systems with a

multi-core CPU, prior work has shown that out-of-core graph analytics principles can also be applied to

GPUs [98], allowing a single GPU to handle significantly larger graphs.

The primary challenge in out-of-core graph analytics is to avoid/reduce random accesses to secondary

storage. To avoid the high cost of random I/O, out-of-core systems use custom graph representations [98,105,

183] and perform non-trivial computation patterns [121, 149] to ensure that accesses to secondary storage are

strictly sequential. While enabling a single compute node to handle larger graphs than what can fit within

memory, out-of-core graph analytics can impose significant (pre-)processing overheads.

Increasing main memory capacity of server-class processors is reducing the need to rely on distributed or

out-of-core graph analytics. Modern workstations typically contain main memory in the range of hundreds

of Gigabytes 2, allowing many real-world graphs to be directly processed from main memory. Prior work

has shown that when the input graph fits within the main memory of a single machine, in-memory graph

analytics is more effective than distributed and out-of-core graph analytics [125]. In-memory graph analytics

also offers a simpler programming model; Twitter implemented the first version of the Who-To-Follow

service by processing the entire twitter graph using a single machine to avoid the complexities of building a

distributed graph processing system [73]. The development of many in-memory graph analytics frameworks

in recent years [12,27,145,154,159,160,175,178] is a testament to the ability to analyze large graphs using a

simple programming model. Recently, Dhulipala et. al. [52] showed that the largest publicly-available graph

– the Hyperlink Web graph (with 3.5 billion vertices and 128 billion edges) – can be efficiently processed

on server-class processor with 1TB of main memory, outperforming many prior out-of-core and distributed

graph processing systems on the same graph. Beyond traditional DDR main memories, Gill et. al. [68]

demonstrated the benefits of using dense non-volatile main memory technologies in graph analytics by

characterizing graph processing performance on a single machine with 6TB of Intel Optane DC Persistent

Memory. Using Optane, the authors were able to analyze the same Hyperlink Web graph directly in its native

graph representation (CSR) and outperform distributed graph analytics systems.

In-memory graph analytics is more efficient than distributed and out-of-core graph analytics since it

completely avoids the partitioning and preprocessing overheads of the latter paradigms. Current trends

suggest increasing main memory capacities (particularly, with the adoption of denser, non-volatile memory

technologies) which will allow processing even larger real-world graphs using just a single machine. There-

2Amazon EC2 even offers single machines with 6-24TBs of main memory [1].
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fore, the rest of this thesis is devoted to identifying the lingering sources of inefficiencies within in-memory

graph analytics and developing optimizations to address the bottlenecks of in-memory graph analytics.

1.3 The Primary Bottleneck of In-memory Graph Analytics: Poor Locality

While more efficient than distributed and out-of-core graph analytics, in-memory graph analytics performance

is still sub-optimal. Graph analytics workloads exhibit very poor cache locality which causes them to be

significantly memory-bound [25, 152, 169] (we characterize the memory-bound nature of graph applications

through roofline analysis in Section 1.4.2). Prior work has shown that, due to poor locality, graph applications

can spend up to 80% of their execution time stalled on DRAM accesses [169]. The primary reason for poor

cache locality of graph analytics workloads is their characteristic irregular memory access pattern. Irregular

memory accesses are fundamental to graph analytics workloads and are the product of using compressed

representations to store the input graphs in a memory-efficient manner. The irregular memory access pattern

coupled with the need to process large inputs causes graph analytics workloads to use the on-chip cache

hierarchy sub-optimally.
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Figure 1.1: Locality of graph analytics workloads: Graph applications exhibit a poor LLC hit rate.

We characterized the Last Level Cache (LLC) locality of all the graph applications in the GAP [27]

benchmark suite on a server-class processor (Intel Xeon E5-2660v4) with an LLC capacity of 35MB. Fig-

ure 1.1 reports the LLC hit rate (collected using hardware performance counters [162]) of the different

graph applications running on the Twitter-2010 graph [104]. The result shows that, even with a relatively

large LLC capacity, graph analytics workloads exhibit poor cache locality with only a 40% average LLC

hit rate% 3. While poor cache hit rates may seem intrinsic to the fundamentally pointer-chasing graph
3Breadth First Search (BFS) and Connected Components-Afforest algorithm [161] (CC_AF) are exceptions because they exhibit

a high LLC hit rate. BFS uses a bitvector to represent explored vertices which significantly reduces the working set size. CC_AF uses
a sampling algorithm to visit only a small portion of the entire graph, boosting its cache hit rate compared to the traditional Shiloach
Vishkin algorithm (CC_SV).
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applications, we show that there is significant room for improving the cache locality of graph analytics:

The thesis of this work is that graph analytics workloads have significant structure in their irregular

access patterns, which can be leveraged to improve cache locality. Specifically, the structural properties of

input graphs, common compressed representations, and application access patterns all contain valuable

information that allow optimizing the locality of irregular graph applications.

1.4 Factors Affecting Cache Locality of Graph Analytics

Irregular memory accesses are the primary reason for poor cache locality in graph analytics workloads.

Multiple different factors contribute to irregular memory accesses in graph analytics. To better understand

these different sources of irregularity, this section provides a primer on in-memory graph analytics. We also

quantify the extent to which the different aspects of graph analytics – data structures, applications, and input

graphs – affect cache locality. This knowledge of how different sources of irregular memory accesses affect

graph analytics performance informs the cache locality optimizations we proposed in this thesis.

1.4.1 Graph Data Structures

While there is diversity in the optimizations employed by different graph analytics frameworks [152],

in-memory graph analytics frameworks share similarities in the data structures used to represent graphs,

application access patterns, and the sparsity patterns of typical input graphs. Graph analytics workloads often

analyze extremely sparse inputs (the adjacency matrix representation of typical graphs is >99% sparse [50]).

Therefore, compressed formats are essential for efficiently storing the input graph in memory (Figure 1.2).

The simplest compressed representation – EdgeList or COO (Coordinates format) – stores a list of (source

and destination vertex) coordinates for each edge in the graph. The Compressed Sparse Row (CSR) format

enables a more memory-efficient representation of the graph by sorting the edgelist. As shown in Figure 1.2,

CSR uses two arrays to represent outgoing edges4 (sorted by vertex source IDs). The Neighbors Array (NA)

contiguously stores each vertex’s neighbors and the Offsets Array (OA) stores the starting offset of each

vertex’s neighborhood in the NA. Accessing the ith and (i+ 1)th entries of the OA allows locating vertex

i’s neighbors in the NA. The OA also allows quick estimation of vertex degree: vertex i’s neighbor count is

the difference between the values in the i+ 1 and i entries in the OA. Due to its ability to quickly identify a

4A directed edge connecting vertex i to vertex j, would be considered an outgoing edge of vertex i and an incoming edge of
vertex j.
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vertex’s neighbors, the CSR format is more widely used in graph analytics frameworks [27, 145, 154, 178]. A

CSR suffices to represent for symmetric graphs. For directed graphs, storing the graph’s incoming edges

requires the transpose of CSR – the Compressed Sparse Column (CSC).
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Figure 1.2: Popular Graph Representations: CSR/CSC are the most memory-efficient data structures for
storing graphs

The compressed representation used for storing the input graph can have a significant impact on graph

analytics performance. Figure 1.3 compares the execution time of graph applications running on different

graph representations. The result shows that compared to execution on the COO (Edgelist) representation,

graph applications using the CSR format are significantly faster. The CSR format provides better performance

because of two reasons. First, the ability to quickly identify any given vertex’s neighbors (O(|vtx_degree|) in

CSR versus O(|E|) in COO). Second, the CSR is more compressed than the COO which reduces the number

of main memory accesses required to read the entire graph. Furthermore, graph analytics on CSR is faster

even after including the cost of building a CSR from the COO5. Figure 1.3 also reports results for graph

analytics execution when both the CSR and CSC formats are available. When both the CSR and CSC are

available, graph analytics workloads can apply an optimization that eliminates expensive synchronization

operations which further optimizes the graph application runtime (we describe this optimization in detail in

the next subsection). The above results show the extent to which compressed representations can impact

graph analytics performance and the value of using the CSR and CSC formats (the de facto standard in

compressed graph representations).

1.4.2 Applications Access Patterns

Graph applications process an input graph by iteratively visiting its vertices until an application-specific

convergence criterion is satisfied. During an iteration, an application may either process all the vertices in the

5Most public graph repositories [33,50,103,115] store the input graph in the COO (EdgeList) format. Therefore, graph analytics
using any other compressed representation needs to incur a preprocessing cost to build the compressed representation from the
COO [132].
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Figure 1.3: Comparison of different graph representations: Operating on CSR (and CSC) is more efficient
than COO even after accounting for the preprocessing cost of building the CSR/CSC from the COO (shaded
portion).

graph or only process a subset of vertices called the frontier. Also, during each iteration, vertices belonging

to the next iteration’s frontiers are identified using application-specific logic. Algorithm 1 shows a typical

graph analytics kernel that traverses an input graph, updating dstData values based on srcData. The kernel

processes the vertices in a frontier in parallel (line 1) and accesses the outgoing neighbors of each vertex in

the frontier (line 2). This pattern of traversing the graph is also known as a push style execution because each

src vertex "pushes" updates to its neighboring dst vertices.

Algorithm 1 A typical graph analytics kernel (Push execution)

1: par_for src in Frontier do
2: for dst in out_neigh(src) do . Encoded in the CSR
3: atomic_increment(dstData[dst], srcData[src]) . Colliding updates of dstData elements

The push-style graph analytics kernel shown above illustrates the key performance challenges faced by

in-memory graph analytics frameworks. First, accesses to dstData elements suffer from poor cache locality.

The sequence of accesses to the dstData array is determined by the contents of the Neighbors Array (NA

in Figure 1.2) of the CSR. As we noted before, the contents of the NA are arbitrarily ordered (defined by

the structure of the input graph) which causes dstData accesses to have low spatial and temporal locality.

Second, in addition to poor cache locality, graph analytics kernels also suffer from synchronization overheads.

Graph kernels must use expensive atomic instructions to synchronize concurrent updates to elements in the

dstData array (line 3 in Algorithm 1). The update requires synchronization because multiple source vertices

can share the same destination vertex as a neighbor, leading to concurrent updates of shared neighbors.

Prior works [26, 32, 154] have explored eliminating the synchronization overheads of graph analytics

workloads by using a pull style execution (Algorithm 2). In contrast to the push execution shown in

Algorithm 1, a pull execution processes the incoming neighbors of every vertex, essentially updating a dst



CHAPTER 1. INTRODUCTION 9

Algorithm 2 Pull version of Algorithm 1

1: par_for dst in G do
2: for src in in_neigh(dst) do . Encoded in the CSC
3: if src in Frontier then
4: dstData[dst] += srcData[src] . Thread-private updates of dstData elements

vertex by "pulling" values from its src neighbors. A pull execution does not require atomic instructions

because each dstData element is only ever updated by a single thread. However, the elimination of atomics

comes at the expense of analyzing redundant edges. The pull execution accesses all the edges in the graph

(lines 1 and 2 in Algorithm 2), even though only edges belonging to source vertices in the frontier need to be

updated (lines 3 and 4 in Algorithm 2). Therefore, in contrast to a push execution (which only accesses edges

emanating from vertices in the frontier), a pull execution is work-inefficient. As a result, graph analytics

frameworks [27,154,178] employ the push-pull direction switching optimization where, in each iteration, the

application switches between a push or a pull execution depending on the frontier’s density. When the frontier

is dense (i.e. most vertices in the graph belong to the frontier), graph applications perform a pull execution to

trade-off of work-efficiency in favor of avoiding atomic updates. For sparse frontiers, graph applications

perform the standard push execution because only a small fraction of the total edges belong to the frontier,

making concurrent updates to a shared neighbor unlikely. In order to use push-pull direction switching, graph

applications need to be able to dynamically switch between analyzing outgoing and incoming neighbors.

Therefore, graph analytics frameworks employing the push-pull optimization store both the CSR and the

CSC [27,154,178]. Figure 1.3 shows that the push-pull optimization (which uses the CSR and CSC) provides

an mean speedup of 2.5x compared to the standard push execution (which uses only the CSR).

Most graph analytics workloads [27, 154, 178] are essentially variations of the typical kernels shown in

Algorithms 1 and 2 with differences in the update operators used (eg. minimum, logical OR, etc), number of

vertices belonging to the frontier, and the data types of dstData and srcData arrays. To quantify the extent

of performance variation caused by the above application-level factors, we performed Roofline analysis [165]

for a set of graph analytics workloads on a large multi-core processor. Figure 1.4 shows the measured

peak floating point throughput and DRAM bandwidth for our server-class, multi-core processor (Intel Xeon

E5-2660v4) and the measured throughput for a set of graph applications that perform floating point arithmetic.

The different throughput points for each application indicate the executions on different input graphs (we

discuss the variation in performance with respect to inputs in the next subsection). The result shows that

variations in application-level properties (for e.g., frontier density, data types of vertex data, etc.) can cause
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Figure 1.4: Roofline plot for graph analytics workloads: Graph applications are memory-bound and have
poor DRAM bandwidth utilization.

an application to have significantly different operational intensity (the number of floating point operations

performed for every byte read from DRAM). However, despite the differences in operational intensity,

graph analytics workloads are universally bad at saturating DRAM bandwidth (with a mean headroom for

throughput improvement of 5.7x). The above result shows that while there is diversity in the performance

trends of different graph applications, there is still significant opportunity across the board for improving

performance through better bandwidth utilization (by improving cache locality).

1.4.3 Structural Properties of Input Graphs

Real-world input graphs do not have a completely random sparsity pattern. Instead, real-world graphs exhibit

structured sparsity patterns that tend to have a significant impact on performance of graph analytics workloads.

As Figure 1.4 shows, executions of the same graph application on different types of input graphs achieve

vastly different performance. For example, the PR-Delta application achieves throughput ranging from 518

MegaFLOPs to 1.5 GigaFLOPS depending on the sparsity pattern of the input graphs. Performance varies

across inputs because structural properties of the input graphs dictate the amount of reuse for vertex data

elements. Therefore, graph application executions across different input graphs tend to use the on-chip cache

hierarchy with varying levels of effectiveness.
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Graphs like social networks and web crawls tend to exhibit two structural properties that offer significant

opportunities for data reuse – power-law degree distributions and community structure. Graphs with a power-

law degree distribution [24] contain a small number of vertices (called "hubs") that have a disproportionately

high connectivity, accounting for a majority of the graph’s edges. When analyzing power-law input graphs, a

majority of the vertex data accesses are to the elements corresponding to hub vertices. Graphs with community

structure are composed of islands of densely connected subgraphs (communities) with few connections

between these communities [70]. When analyzing community-structured input graphs, data elements

belonging to vertices in the same community are likely to be accessed in tandem. The power-law degree

distributions and community structures present significant reuse opportunities by controlling/modifying the

assignments of IDs to vertices ("vertex ordering"). Assigning hub vertices in power-law graph consecutive IDs

is likely to boost temporal and spatial locality for the heavily-accessed hub vertices. Similarly, for community-

structured graphs, assigning consecutive IDs to vertices belonging to the same community can improve data

reuse in on-chip caches. We study the impact of changing vertex orders based on the structural property of

the input graph by measuring the cache locality achieved by the Pagerank graph application for different

vertex orders of the PLD input graph (a real-world graph exhibiting both power-law degree distribution and

community-structure [112]). Figure 1.5 compares the Last Level Cache (LLC) misses of different vertex

orders relative to the original ordering of vertices in the PLD graph. The result shows that vertex order

which leverage the power-law degree distribution (for eg, HUBCLUSTER, HUBSORT, DEGSORT) and

community-structure (for eg, RABBIT) can significantly reduce LLC misses and improve cache locality.

However, modifying the vertex order is not a panacea for addressing the poor cache locality problem of graph

analytics because real-world graphs may not always strictly map to a power-law distribution [36] or have

a strong community structure [116]. As a result, the amount of reuse that can be extracted from a graph’s

sparsity pattern will vary.

1.5 Outline of Thesis Contributions

The previous section showed how the different sources of irregularity in graph analytics – structural properties

of input graphs, compressed representations, and application access patterns – affect the cache locality and

performance of graph applications. As mentioned in Section 1.3, the main insight of this thesis is that the

different sources of irregularity in graph analytics also contain information that can be used to improve
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Figure 1.5: Cache locality from different vertex orders: Changing vertex data layout based on structural
properties of real-world inputs can increase reuse in on-chip caches.

locality of graph applications. With this insight, we developed four cache locality optimizations for graph

analytics:

Selective Graph Reordering (Chapter 2): We have already seen that changing the ordering of vertices

based on structural properties of input graphs is a critical tool for improving cache locality (Figure 1.5).

However, existing graph reordering optimizations for power-law input graphs provide questionable benefits

once reordering overheads are included; offering performance improvements of up to 76% for some graphs

while also degrading performance by almost 37% for other graphs. To make graph reordering a practical

optimization, we developed an inexpensive analytical model called the Packing Factor which analyzes

the extent to which a graph’s degree distribution matches power-law and uses this information to estimate

performance improvement from graph reordering. The high accuracy of Packing Factor’s speedup prediction

enables selective application of graph reordering, allowing us to preserve the speedups that come from

unconditionally reordering graphs while also restricting the worst-case performance degradation to less than

0.1%. In summary, analyzing the structure of input graphs allows us to predict the extent of benefits from

graph reordering and determine whether reordering the graph would be a worthwhile optimization.

RADAR (Chapter 3): As discussed in Section 1.4.2, graph analytics workloads are bottlenecked not

only by poor cache locality but also by expensive synchronization overheads (due to the need to use atomic

updates). Existing graph analytics optimizations targeted at reducing synchronization overheads do so at the

expense of work-efficiency (i.e. they perform redundant memory accesses to eliminate atomic updates). We

explore a synchronization optimization called RADAR that reduces atomic updates without affecting the

work-efficiency of graph applications. RADAR is a memory-efficient data duplication strategy based on the

observation that, for power-law graphs, a bulk of the atomic updates will only be to the small subset of highly

connected "hub" vertices which allows creating thread-private copies only for the hubs. RADAR builds upon

graph reordering to efficiently identify the hub vertices in a graph and avoid atomic updates for the hubs. In
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summary, by leveraging the pattern of atomic updates in power-law input graphs, RADAR is able to combine

data duplication with graph reordering to provide superior cache locality and scalability compared to prior

optimizations.

P-OPT (Chapter 4): We have seen that graph applications make sub-optimal use of on-chip caches and

receive very low cache hit rates (Figure 1.1). While decades of research has produced high-performance cache

replacement policies effective at improving locality across various workloads, state-of-the-art replacement

policies are ineffective for graph analytics workloads. Graph application data reuse is complex and the

heuristics used by existing replacement policies are a poor fit for graph applications. Therefore, we set out on

designing a cache replacement policy called P-OPT tailored to the unique access patterns of graph analytics

workloads. P-OPT is based on the observation that most popular graph representation (Section 1.4.1) –

CSR and CSC – efficiently encodes information about future accesses of graph application data. The

easy availability of future access information basically makes Belady’s optimal cache replacement policy

viable for graph analytics workloads. In summary, by leveraging information present within popular graph

representations, P-OPT is able to use the graph’s structure to perform near-optimal cache replacement and

improve cache locality.

HARP (Chapter 5): Irregular memory accesses are the primary contributor to poor cache locality in

graph analytics workloads. Recently, a software-based locality optimization called Propagation Blocking

(PB) was developed for improving cache locality of graph applications performing irregular updates 6. Due to

the pervasiveness of irregular updates, PB turns out to be effective at improving locality for a much broader

range of workloads beyond just graph analytics. However, by virtue of being a software-based optimization,

the locality benefits of PB come at the expense of executing extra instructions and incurring data orchestration

overheads. We developed HARP, a set of architecture extensions aimed to eliminating the bottlenecks of a

PB execution, to improve the performance benefits offered by PB. In summary, by providing architecture

support for a versatile software optimization (PB) that leverages a common application access pattern –

irregular updates – HARP is able to improve performance across a broad range of workloads.

The cache locality optimizations proposed in this thesis include both software-based solutions (Selective

Graph Reordering and RADAR) as well as architectural solutions (P-OPT and HARP). Each optimization

leverages a different aspect of graph analytics, from the structural property of input graphs to compressed

6Throughout this thesis, irregular updates refer to read-modify-write operations on irregular memory locations. Therefore,
irregular updates are distinct from irregular reads. For example, the push phase execution (Algorithm 1) performs irregular updates
to dstData whereas the pull execution (Algorithm 2) performs irregular reads of srcData.
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representations to application access patterns. The scope of each cache locality optimization is also different.

We summarize all the optimizations proposed in this thesis in Table 1.1.

Optimization Leverages Applies to
Selective Reordering
& RADAR

Structural Property of Input
Graphs

Graph Analytics on power-law input graphs

P-OPT CSR & CSC Representation Graph Analytics in general (Input-agnostic)
HARP Application Access Pattern Irregular Update Workloads (Including Graph Analytics).

Table 1.1: Cache locality optimizations proposed in this thesis



Chapter 2

Predicting Graph Reordering Speedups

with Packing Factor

The ordering of vertices in a graph has a significant impact on the cache locality of graph analytics workloads

(Figure 1.5). Graph Reordering is a software-based cache locality optimization that leverages the structural

properties of input graphs (such as power-law degree distribution or community structure) to create a new

graph with an ordering of vertices that improves cache locality. Despite the existence of a large number of

reordering techniques with varying levels of sophistication and effectiveness [13, 23, 34, 43, 92, 108, 110, 117,

144, 164, 176], two properties of graph reordering techniques limit their viability as a universally effective

optimization. First, the speedup benefits from graph reordering techniques vary widely across different graph

applications and inputs. Second, graph reordering techniques do not always provide a net speedup when the

cost of reordering the graph is included. To address the overheads of graph reordering, we begin this chapter

by making the case for lightweight graph reordering techniques which aim to provide a net speedup even

after accounting for the overheads of reordering the graph (Section 2.1). Next in Section 2.2, we discuss the

results of our detailed performance characterization of lightweight reordering techniques that allows us to

identify the categories of applications and input graphs that receive the most benefit from lightweight graph

reordering [17]. Using the characterization study, we develop a simple analytical model called the Packing

Factor that allows for a quick estimation of the benefits from graph reordering for any given input graph.

In Section 2.4, we show how the Packing Factor enables selective lightweight graph reordering where the

overheads of graph reordering are only incurred for input graphs that will receive high speedup benefits;

15
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improving the viability of lightweight graph reordering. We conclude this chapter by discussing extensions

for the Packing Factor metric to target a variety of graph structures and reordering algorithms (Section 2.6).

2.1 The Case for Lightweight Graph Reordering

Graph reordering techniques improve locality of graph analytics workloads by improving the data layout

of the input based on structural properties of the graph. However, creating a new ordering of vertices and

building a graph reflecting the new vertex order is a preprocessing overhead imposed by graph reordering.

With the exception of a few works [13, 17], most prior studies ignore the preprocessing overheads of graph

reordering. The main assumption used to ignore overheads – that the costs of reordering the graph can be

amortized over multiple executions on the reordered graph – does not hold true in many important application

scenarios. Prior work [42, 78, 136] noted that graph analysis might need to be performed on snapshots of

dynamically evolving graphs at different instants of time (referred to as temporal graph mining). Examples

of such temporal analyses include computing the top webpages (based on their page ranks) in dynamically

changing social networks [104] or tracking changes in the diameter of an evolving graph [114]. In such

application scenarios, an input graph is often processed only once which makes it hard to amortize the

overheads of sophisticated graph reordering techniques [129].

To highlight the overheads of graph reordering, we measure the reordering costs of Gorder, a state-of-the-

art technique that has been shown to outperform various prior reordering algorithms [164]. Gorder uses an

approximation algorithm to solve the NP-hard problem of finding an optimal vertex ordering that maximizes

the overlap between neighborhoods of vertices with consecutive IDs. Table 2.1 shows the run times for the

GAP implementation of the PageRank application on five different graphs with 56 threads (Experimental

setup in Section 2.2.4). “Baseline” runs PageRank on the original graph, “Gorder” runs PageRank after

reordering the graph with Gorder. The Gorder overhead is the time to run the authors’ original Gorder

implementation (which is single-threaded). Gorder consistently improves PageRank’s performance across all

input graphs with a run time reduction on average 35% and with a maximum reduction of 61%.

While Gorder is effective at reducing application run time, the overhead is extremely high. Gorder’s

worst case overhead adds a time cost equal to 1200× the original run time of the PageRank application.

Even if Gorder was perfectly parallelizable (our initial investigations suggest it is not), its run time on our

system would be 21× the run time of PageRank. The table also shows the minimum number of executions of
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gplus web pld-arc twitter kron26
PageRank Run Time on original graph 6.40s 7.84s 12.40s 21.3s 12.88s
PageRank Run Time on Gorder-ed graph 4.48s 7.77s 6.54s 13.09s 5.01s
Overhead (Gorder Run Time) 1685.9s 459.8s 7255s 25200s 53234s
Number of runs required to amortize overhead 873 6477 1237 3072 6771

Table 2.1: Reordering overhead of Gorder: Gorder improves performance but with extreme overhead.

PageRank on the reordered graph required to amortize the overhead of Gorder. Across input graphs, a large

number of runs are required to justify the overhead of reordering the graph using Gorder. Gorder might be a

viable reordering technique in scenarios the reordered graph will be processed thousands of times. However,

in other cases where the graph is only expected to be analyzed a couple of times (for example, temporal

graph mining or one-shot execution on a graph), sophisticated reordering techniques such as Gorder are a

de-optimization.

2.2 Performance Improvements from Lightweight Graph Reordering

Results from the previous section (Table 2.1) highlight the need for lightweight reordering techniques that

can improve the performance of graph applications without imposing prohibitively high overheads. In this

section, we show that Lightweight Reordering (LWR) techniques can indeed provide a net speedup even

after including reordering overheads. However, the benefits from LWR are highly dependent on the specific

graph application and input. To identify the categories of graph applications and inputs that benefit the most

from LWR, we characterized performance benefits from three LWR techniques across a diverse set of graph

applications spanning two graph benchmark suites running on large real-world input graphs that stressed the

memory limitations of our evaluation platforms. We provide a brief description of the LWR techniques, graph

applications, input graphs and evaluation platform before presenting the results of our characterization study.

2.2.1 Lightweight Reordering Techniques

We consider three representative Lightweight Reordering (LWR) techniques – Rabbit, HubSort, and Hub-

Cluster.

Rabbit. Rabbit Ordering [13] is a recently proposed lightweight graph reordering technique that exploits

the community structure of graphs. The key idea of Rabbit Ordering is to map the hierarchically dense

communities in graphs to different levels of the cache hierarchy with the most densely connected communities
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being mapped to caches closer to the processor. The authors of Rabbit Ordering use a scalable algorithm

for rapid community detection allowing Rabbit Ordering to provide end-to-end performance improvements

compared to other commonly used graph reordering techniques [13].

Hub Sorting. Frequency based clustering [177] (or “hub sorting”) is another lightweight reordering

technique. Hub Sorting relabels the hub vertices 1 in descending order of degrees, while retaining the vertex

ID assignment for most non-hub vertices. Hub Sorting improves spatial and temporal locality of vertex data

accesses for power-law graphs. Spatial locality of vertex data accesses is improved since assigning vertices in

descending order of degree places the most highly accessed elements of vertex data (i.e. hub vertices) in the

same cache line. Temporal locality of vertex data accesses is improved since assigning the highly accessed

hub vertices a contiguous range of IDs increases the likelihood of serving requests to high-reuse portion of

the vertex data from on-chip caches.

Hub Clustering: Hub Clustering is our variation of Hub Sorting that ensures hub vertices are assigned a

contiguous range of IDs, but does not guarantee that the vertex IDs are assigned in descending order of degree.

Hub Clustering improves temporal locality of vertex data accesses by ensuring tight packing of high-reuse

hub vertex data. Hub Clustering incurs lower reordering overhead compared to Hub Sorting since it does not

sort the hub vertices in descending order of degree and consequently provides reduced speedup compared

to Hub Sorting since it misses the opportunity to improve spatial locality by placing the most frequently

accessed vertices in the same cache line. We included Hub Clustering in our evaluation to understand the

trade-off between reordering overhead and the effectiveness of the reordering produced.

For Hub Sorting and Hub Clustering, the vertices are sorted by out-degrees for pull implementations

(or pull-phase dominated implementations) and in-degrees for push implementations. The rationale for the

decision is that vertices with high out-degree will be in-neighbors of many vertices, occurring frequently

in the Neighbor Array (NA) of the graph’s CSC (for example, vertex 0 in Figure 1.2 constitutes majority

of the CSC’s NA). Since accesses to vertex data are determined by the composition of the NA of a graph’s

CSC (srcData accesses in line 4 of Algorithm 2), a pull-based implementation will make a majority of the

accesses to high out-degree vertices because the algorithm iterates over its in-neighbors. Sorting vertices by

out-degrees for pull implementations will, therefore, increase the likelihood of frequently accessed vertices

being cached. Symmetrically, a push-based algorithm is likely to make majority of its accesses to vertices

with high in-degree because the algorithm iterates over its out-neighbors and, hence, would benefit from

1We define hub vertices as vertices with degree greater than average degree.
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ordering vertices in descending order of in-degrees.

Figure 2.1 shows vertex ID reassignment produced by Degree Sorting, Hub Sorting, and Hub Clustering.

We omit Gorder and Rabbit Ordering because they are difficult to visualize.

Vertex Degrees (Original)

25 494 4 420 21 6499 6

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Vertex Degrees (Degree Sorted)

21 449 464 25 420 6

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

99

Vertex Degrees (Hub Sorted)

25 499 49 464 21 204 6

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Vertex Degrees (Hub Clustered)

25 2099 64 449 21 44 6

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 2.1: Vertex ID assignments generated by different reordering techniques: Vertex IDs are shown
below the degree of the vertex. Highly connected (hub) vertices have been highlighted. Degree Sorting is
only shown for instructive purposes

2.2.2 Graph Applications

We used 11 applications from the GAP [27] and Ligra [154] benchmark suites. All the applications were

compiled using g++-6.3 with -O3 optimization level and OpenMP [46] for parallelization. We evaluated all

applications in the two benchmark suites with the only exception of Triangle Counting. We exclude Triangle

Counting from our evaluation because the GAP implementation already applies a common optimization of

reordering vertices in decreasing order of degree.

We provide a brief description of the execution characteristics of each application and refer the reader to

the original references for additional information [27, 154].

Page Rank (PR-G and PR-L): Page Rank [35] is a popular graph benchmark that iteratively refines per-

vertex ranks until the sum of all ranks drops below a convergence threshold. The implementation performs

pull-style accesses every iteration and processes all the vertices each iteration, causing many random reads to

vertex data (srcData). The GAP and Ligra implementations are similar with the only significant difference

being that Ligra uses a lower default convergence threshold (1e−7 vs 1e−4) leading to a longer application

runtime.

Radii Estimation (Radii-L): Graph Radii estimation approximates the diameter of a graph (longest shortest

path) by simultaneously performing multiple BFS traversals from different random sources. As a consequence

of performing multiple BFS traversals, the application processes a large fraction of the total number of

edges; visiting each vertex multiple times that leads to reuse of vertex data accesses. To avoid the cost of
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synchronization, the implementation processes large frontiers using pull-style accesses.

Collaborative Filtering (CF-L): Collaborative filtering is commonly used in recommender systems and

has execution characteristics similar to Page Rank (processing all the vertices each iteration and performing

pull-style accesses every iteration). However, CF has two distinguishing features. First, the application

operates only on weighted symmetric bipartite graphs causing CF to have a unique access pattern to vertex

data (discussed in Section 2.2.5). Second, CF has a significantly larger per-element size of vertex data

compared to other applications (160B versus 4/8B) leading to a significantly larger vertex data working set

size.

Components (Comp-G and Comp-L): Connected components is used to find disconnected subgraphs in a

graph. Components iteratively refines the labels of each vertex until all the vertices in a connected component

share the same label. The algorithm causes the application to process a large fraction of total edges during

the initial iterations of the computation. The main distinction between the GAP and Ligra implementations is

that GAP supports directed graphs while the Ligra implementation only processes undirected (symmetric)

graphs.

Maximal Independent Set (MIS-L): MIS iteratively refines per-vertex labels to find largest independent

set (set of vertices wherein no two vertices are connected) in a graph. The application has execution

characteristics similar to the Ligra implementation of Components. Both applications operate on undirected

graphs and perform pull-style accesses during the initial iterations when the frontier sizes are large.

Page Rank-Delta (PR-Delta-L): Page Rank Delta is a variant of Page Rank that only processes a subset

of vertices for which the rank value changed beyond a δ amount. While Page Rank Delta does not process

all the vertices every iteration like Page Rank, the application processes large frontiers during the initial

iterations of the computation. In contrast to most other Ligra applications, the implementation does not

switch between push and pull style accesses based on frontier sizes and performs push-style accesses every

iteration.

SSSP-Bellman Ford (SSSP-L): The Ligra implementation of SSSP uses the Bellman Ford algorithm. Due

to the work inefficient nature of the Bellman Ford algorithm, the application processes a significant fraction

of total edges in the initial iterations and, hence, offer reuse in vertex data accesses. Similar to Page Rank

Delta, the SSSP implementation does not switch between push and pull style accesses and always performs

push-style accesses.

Betweenness Centrality (BC-G and BC-L): Betweenness Centrality finds the most central vertices in a
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graph by using a BFS kernel to count the number of shortest paths passing through each vertex from a source.

Since the application traverses over a BFS tree of a graph, the application processes a limited fraction of total

edges for most iterations.

SSSP-Delta Stepping (SSSP-G): The GAP implementation of Single Source Shortest Path problem uses

the delta stepping algorithm [127] which strikes a balance between work-efficiency and parallelism. The cost

of updating thread-local containers used for work-efficient scheduling of vertices reduces the fraction of the

application runtime spent executing the irregular access kernel (Algorithm 2). The implementation performs

push-style accesses to process vertices each iteration.

Breadth First Search (BFS-G and BFS-L): The GAP and Ligra implementations of BFS use the push-

pull direction-switching optimization proposed in prior work [26] to reduce the total number of edges

processed relative to a traditional implementation. Consequently, BFS processes the fewest edges among all

applications; offering limited room for performance improvement from locality optimization. Additionally,

the short runtime of the BFS application offers limited room for amortizing the overhead of graph reordering.

K-core Decomposition (KCore-L): KCore is an application that finds sets of vertices (called cores) with

degree greater than K for different values of K. The application takes many iterations (≈1000) to converge

and, hence, has a long runtime. Additionally, the algorithm used for K-core computation causes the executions

to spend only a small fraction (≈10%) of the total run time performing irregular accesses (Algorithm 2).

2.2.3 Input graphs

We use large, real-world input graphs with power-law degree distribution that have been collected from a

variety of datasets for evaluating the performance benefits from lightweight reordering. Table 2.2 lists the

number of vertices, edges, the size of the vertex data array (assuming 8B element size), and the size of a

CSR representation for the graph that are used for majority of our evaluation. We use the graph converters

available in the GAP and Ligra benchmarks to create undirected and/or weighted versions of these graphs

based on the application requirements. For Collaborative Filtering, we use the 8 largest bipartite graphs

available in the Konect dataset [103].
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DBP GPL PLD KRON TWIT MPI WEB SD1
Reference [103] [71] [126] [29] [104] [103] [51] [126]
|V | (in M) 18.27 28.94 42.89 33.55 61.58 52.58 50.64 94.95
|E| (in B) 0.172 0.462 0.623 1.047 1.468 1.963 1.93 1.937
irregData Sz (MB) 146.16 231.52 343.12 268.4 498.64 420.64 405.12 759.6
CSR Sz (GB) 1.41 3.66 4.96 8.05 11.34 15.02 14.75 15.13

Table 2.2: Statistics for the evaluated input graphs: The size of vertex data for all the graphs exceeds the
LLC capacity.

2.2.4 Evaluation Platform and Methodology

We performed all our experiments on a dual-socket server machine with two Intel Xeon E5-2660v4 processors.

Each processor has 14 cores, with two hardware threads each, amounting to a total of 56 hardware execution

contexts. Each processor has a 35MB Last Level Cache (LLC) and the server has 64GB of DRAM

provided by eight DIMMs. All experiments were run using 56 threads and we pinned the software thread to

hardware threads to avoid performance variations due to OS thread scheduling. To further reduce sources of

performance variation, we also disabled the “turbo boost” DVFS features and ran all cores at the nominal

frequency of 2GHz.

We ran 17 trials for each application-input pair and report the geometric mean of the 16 trials. We exclude

the timing of the first trial to allow the caches to warm up. For source-dependent traversal applications (e.g.

BFS, SSSP, BC, etc.), we select a source vertex belonging to the largest connected component to ensure that a

significant fraction of the graph is traversed. To identify such a source, we ran 100 trials of these applications

with different sources and selected the source that traversed the maximum number of edges in the graph.

We also maintain a mapping between the vertex ID assignments before and after reordering to ensure that

traversal applications running on the reordered graphs use the same source as the baseline execution running

on the original graph [29].

2.2.5 Characterization Study Results

Lightweight reordering (LWR) techniques improve graph processing performance with low overhead. How-

ever, speedup from LWR depends on the LWR technique used, application characteristics, and properties of

the input graph. This subsection identifies the characteristics of applications that receive end-to-end perfor-

mance benefits from LWR, by studying three techniques (of varied sophistication and overhead) – Rabbit

Ordering, Hub Sorting, and Hub Clustering – across the applications and graphs presented in Sections 2.2.2
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Figure 2.2: Speedup after lightweight reordering: Data are normalized to run time with the original vertex
ordering. The total bar height is speedup without accounting for the overhead of lightweight reordering.
The upper, hashed part of the bar represents the overhead imposed by lightweight reordering. The filled,
lower bar segment is the net performance improvement accounting for overhead. The benchmark suites are
differentiated using a suffix (G/L).

and 2.2.3.

Figure 2.2 plots LWR performance improvements for each application and several input graphs. For each

execution (application + input graph + LWR technique), we show speedup without reordering overhead (total

bar height) and end-to-end speedup accounting for the overheads (solid bar). The baseline is an execution on

the input graph as originally ordered by the publishers of the graph datasets [51, 103, 115, 126]. We do not

have data for Rabbit Ordering on MPI, WEB, and SD1 because Rabbit Ordering exhausts our machine’s

64GB of memory for these graphs. We also omit data for COMP-L, MIS-L, and KCore-L for the undirected

versions of the same graphs because the applications run out of memory.

To understand variation in performance across applications, we measured the average fraction of edges

processed in an iteration across applications from Ligra (shown in Table 2.3). We weight the fraction of edges

processed in an iteration by the fraction of total execution time spent in that iteration to focus on iterations

that dominate runtime. The data in Table 2.3 help explain the benefit due to LWR, which we present next.

Finding 1: Lightweight reordering can provide end-to-end speedups. Figure 2.2 shows that the Page

Rank (GAP and Ligra), Radii, Collaborative Filtering, Components, and MIS see a net speedup including
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DBP GPL PLD KRON TWIT MPI WEB SD1 AVG
PR 100 100 100 100 100 100 100 100 100
Radii 55.59 71.79 69.82 87.97 75.07 72.35 41.39 43.19 64.65
CF 100 100 100 100 100 100 100 100 100
BFS 1.31 1.62 1.78 0.74 0.78 0.9 0.22 0.56 0.99
BC 22.38 22.63 28.56 43.60 28.98 25.72 9.78 15.72 24.67
SSSP 47.72 70.1 59.1 82.31 76.27 67.28 31.97 58.68 61.67
PR-δ 80.19 84.45 76.32 90.70 83.31 83.76 76.97 72.36 81.00
KCore 0.17 0.03 0.05 1.02 0.02 - - - 0.25
COMP 98.69 98.36 83.22 84.03 98.12 - - - 92.48
MIS 71.48 56.54 76.68 79.24 54.32 - - - 67.65

Table 2.3: Average percentage of edges processed by Ligra applications: A higher average percentage of
edges processed corresponds to greater reuse in vertex data accesses. The AVG field for each application
represents the average value of the metric across 8 input graphs.

LWR overheads in some cases. Table 2.3 shows that these applications all process a significant fraction of

edges in each iteration. The high average percentage of edges processed leads to significant reuse in vertex

data accesses and offers a higher room for locality improvement from LWR.

Finding 2: Hub Sorting is a good balance of effectiveness and reordering overhead. The data for

Page Rank and Radii reveal a tension between LWR effectiveness and the overhead of graph reordering.

Compared to Hub Clustering, Hub Sorting yields higher speedup (excluding overhead) than Hub Sorting

for the PLD, TWIT, KRON, and SD1 graphs. The higher speedup is due to reordering frequently accessed

vertices in decreasing degree order, improving locality by placing the most frequently accessed vertex data

elements in the same cache line. Hub Clustering misses this opportunity for spatial locality because it does

not store vertices in decreasing degree order. In contrast, Hub Sorting incurs a higher overhead than Hub

Clustering (i.e., the shaded portion in each bar) reducing the difference in the net speedup between the two

techniques, especially for the applications with short runtimes (Radii and GAP’s Page Rank).

The data for Rabbit Ordering reveal a surprising trend: the less sophisticated Hub Sorting algorithm has

higher speedup than the more sophisticated Rabbit Ordering algorithm. Ignoring overhead, Rabbit Ordering

does not consistently outperform Hub Sorting because the authors of Rabbit Ordering use heuristics to

parallelize the reordering algorithm [13]. After accounting for reordering overhead, Hub Sorting consistently

outperforms Rabbit Ordering. The data suggest that for Page Rank and Radii, Hub Sorting is an effective

middle ground, improving performance with low overhead.

Finding 3: Hub Sorting is a poor fit for symmetric bipartite graphs. Figure 2.2 shows that Collabo-

rative Filtering has different performance characteristics than Page Rank despite having similar execution
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characteristics. While Rabbit Ordering consistently improves performance, Hub Clustering has the best net

speedup after accounting for overhead. Surprisingly, Hub Sorting causes slowdown for the EDIT, LIVEJ, and

TRACK graphs, even after ignoring reordering overhead.

Collaborative Filtering is different because its input graphs are symmetric and bipartite (i.e., vertices fall

into two parts A or B and no pair of nodes in the same part are connected). Neighbors of a vertex u ∈ A are

in part B and vice versa. Contiguously ordering vertices in a part offers temporal locality because irregular

vertex data accesses are restricted to one part at a time. The base ordering of our bipartite graphs had their

parts originally laid out contiguously. Naively Hub Sorting mixes vertices from different parts, leading to the

slowdown.
Base Ordering

Hub Sorting

Hub Clustering

(a) LIVEJ

Base Ordering

Hub Sorting

Hub Clustering

(b) DBLP

Figure 2.3: Vertex orders of a symmetric bipartite graph by Hub Sorting and Hub Clustering: The two
colors represent the parts of the bipartite graph. Hub Sorting produces a vertex order wherein vertices from
different parts are assigned consecutive vertex IDs whereas Hub Clustering produces an ordering where
vertices belonging to the same part are often assigned consecutive IDs.

We studied the part-wise ordering effect by visualizing the part number (A or B) for each vertex in

the base ordering and in the ordering produced by Hub Sorting and Hub Clustering (Figure 2.3) for two

symmetric bipartite graphs. The data show that Hub Clustering is better at preserving part-wise locality

compared to Hub Sorting and, hence, provides better performance.

Finding 4: LWR can affect convergence rate. For Components (GAP and Ligra) and MIS, performance

with LWR varies due to a change in the number of iterations to convergence. Convergence varies because in

these algorithms the total amount of work performed per iteration depends on the vertex ID assignment. Note

that reordering does not affect correctness of these applications. Table 2.4 shows the increase in iterations to

convergence for each LWR technique. Speedups in Figure 2.2 track the variation in iterations to convergence

in most cases. However, the increase in iterations to convergence does not vary consistently with application,

input graph, or LWR technique used.

Finding 5: Push-mode applications benefit less from LWR. SSSP-Bellman Ford (Ligra) and Page Rank
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DBP GPL PLD KRON TWIT

Comp-G
Rabbit 2.39x 2.0x 5.23x 1.33x 1.47x
HubSort 1.36x 1.0x 2.09x 0.67x 0.9x
HubCluster 1.81x 1.0x 1.05x 0.67x 0.88x

Comp-L
Rabbit 1.5x 1.25x 1.27x 1.0x 0.99x
HubSort 1.25x 1.0x 1.0x 0.67x 0.93x
HubCluster 1.25x 1.0x 1.0x 0.83x 0.94x

MIS-L
Rabbit 0.3x 0.56x 0.56x 0.96x 0.52x
HubSort 0.69x 0.56x 0.79x 2.27x 1.01x
HubCluster 0.85x 0.85x 0.98x 1.19x 1.02x

Table 2.4: Impact of LWR on iterations until convergence: Values greater than 1 indicate delayed
convergence compared to baseline execution on the original graph. Values less than 1 indicate that the
execution on the reordered graphs converged in fewer iterations than the execution on the original graph.

Delta applications do not speed up with LWR despite processing a large fraction of edges per iteration

(Table 2.3). The distinguishing feature of these two Ligra applications is that they do not use the push-

pull direction optimization, instead using push-mode accesses only. While laying out the most frequently

accessed vertices together improves performance for push-mode applications, doing so may also increases

the likelihood of false sharing, which degrades performance. False sharing affects Page Rank Delta on the

DBP, GPL, and MPI graphs. Consequently, Rabbit Ordering and Hub Sorting cause slowdowns even without

the reordering overhead. SSSP-Bellman Ford has better performance than Page Rank Delta because it is

optimized to use Test&Test&Set [150] operations, which reduces false sharing.

To help understand the loss due to false sharing from LWR in these push-style applications, we evaluated

speedup from LWR after modifying the applications to use the push-pull optimization. Table 2.5 shows

speedups (without overhead) from LWR for these push-pull versions of Page Rank Delta and SSSP-Bellman

Ford. The results shows that all three LWR techniques provide greater speedup when the two applications use

the push-pull optimization compared to when the applications perform push-style accesses throughout the

execution (Figure 2.2). Although the push-pull implementations of Page Rank Delta and SSSP-Bellman Ford

are slower than the push-style implementations, the results of Table 2.5 illustrate that push-style accesses

reduce the performance benefits of LWR, even in applications that process a large fraction of edges per

iteration (Table 2.3).

Finding 6: Applications that process few edges per iteration do not benefit from LWR. Applications

that process a small fraction of edges per iteration (BC, BFS, and KCore) see little benefit from LWR, even

after ignoring reordering overhead. Figure 2.2 shows that these applications consistently see no speedup

from LWR even without accounting for the reordering overhead. The KRON graph is a notable exception,
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DBP GPL PLD KRON TWIT

PR-δ -L
Rabbit 1.11x 1.53x 1.53x 0.92x 1.26x
HubSort 0.94x 0.99x 1.43x 1.77x 1.77x
HubCluster 1.06x 1.01x 1.24x 1.46x 1.27x

SSSP-L
Rabbit 0.87x 1.36x 1.2x 0.95x 0.97x
HubSort 1.02x 1.14x 1.58x 2.0x 1.4x
HubCluster 1.14x 1.07x 1.47x 1.58x 1.4x

Table 2.5: Speedups from LWR for push-pull implementations: LWR techniques provide greater perfor-
mance improvements for applications that perform pull-style accesses while processing large frontiers.

seeing appreciable benefit due to its flat graph structure2 offering reuse of vertex data accesses. However, the

real-world graphs in our dataset do not share KRON’s flat structure and, hence, do not benefit from LWR.

The data for BFS and KCore further highlight the lack of benefit with few edges processed per iteration.

Table 2.3 shows that the BFS and KCore application process the fewest edges per iteration of all the

applications we evaluated. The small fraction of edges processed per iteration leads to limited reuse in vertex

data access and offers little room for improvement from LWR.

2.3 When is Lightweight Reordering a Suitable Optimization?

We summarize Section 2.2.5’s analysis across LWR techniques, applications, and input graphs by listing

recommendations for the lightweight reordering technique suitable for different categories of applications.

Takeaway 1: Applications like Page Rank and Radii that process a large fraction of edges in each

iteration in the pull-mode are most amenable to lightweight reordering techniques.

Takeaway 2: Existing lightweight reordering techniques are inappropriate for symmetric bipartite graphs

(as in CF) unless modified to store vertices in each part contiguously in memory.

Takeaway 3: In some cases (e.g., Components and MIS) lightweight reordering changes the number of

iterations to convergence, revealing an opportunity for future techniques leveraging vertex ordering to speed

convergence.

Takeaway 4: Applications that are push-style (e.g., Page Rank Delta and SSSP-Bellman Ford) or process

a few edges per iteration (e.g., BC, SSSP-Delta Stepping, BFS, and KCore) do not benefit from lightweight

reordering because of false-sharing and limited reuse in vertex data accesses respectively. The ineffectiveness

of lightweight reordering in these applications is not due to the overhead of reordering.

2Flat means the BFS tree of KRON is shallow, with a majority of vertices in a few levels of the tree
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Takeaway 5: When Hub Sorting is effective (e.g., Page Rank and Radii), its benefit is input graph-

dependent (Figure 2.2), sometimes providing no speedup (e.g., DBP, GPL, MPI, WEB) and instead causing a

net slowdown due to its overhead. The next section studies the characteristics of graphs for which lightweight

reordering provides end-to-end speedups.

2.4 Selective Lightweight Graph Reordering Using the Packing Factor

Hub Sorting is an effective lightweight reordering technique that provide end-to-end performance improve-

ment for applications like Page Rank and Radii. However, the speedup from lightweight reordering depends

on the input graph. Therefore, we cannot unconditionally reorder input graphs because reordering can

sometimes cause slowdowns. This section shows that the graph structure and the original graph ordering

determine the speedup of reordering. We propose a low-overhead metric, called the Packing Factor, to

identify the properties of the input graph critical for achieving speedup from reordering and show that the

Packing Factor metric enables selective application of Hub Sorting.

2.4.1 Input-dependent Speedup from Hub Sorting

The variation in a graph’s structure and its original vertex ID assignment explains the difference in speedups

from Hub Sorting across input graphs. Assigning hub vertices a contiguous range of IDs ensures that the

frequently accessed elements of vertex data (i.e., corresponding to hubs) are packed closely, spanning a small

number of cache lines. The hub vertices in a graph are connected to a significant fraction of the graph with the

hub vertices accounting for 80% of total edges across the graphs shown in Table 2.2. Consequently, accesses

to cache lines containing hubs’ elements in the vertex data are frequent and lines containing tightly-packed

hubs are likely to be frequently reused. These tightly-packed hubs’ cache lines are also likely to remain

resident in the Last Level Cache (LLC), improving locality. Moreover, sorting vertices by decreasing vertex

degree puts the most frequently accessed vertices in the same cache line improving spatial locality.

In order to benefit from Hub Sorting, an input graph must be skewed and its hubs must not already be

tightly-packed before reordering. In a skewed input graph, a few vertices have a disproportionately higher

degree than all other vertices. Skewed graphs allow Hub Sorting to pack the few hubs into even fewer cache

lines, increasing the likelihood that vertex data accesses will hit in the LLC because the hubs’ cache lines

will remain cached. Additionally, to benefit from Hub Sorting, the original layout of hub vertices must also
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be sufficiently sparse in memory such that multiple hubs are unlikely to reside in the same cache line. If hub

vertices are originally tightly-packed, Hub Sorting is ineffective because accesses to the hubs will already

have good locality. In contrast, graphs that originally have sparsely distributed hub vertices suffer from poor

temporal and spatial locality. For such graphs, Hub Sorting provides performance gains by reordering the

hub vertices such that the highly accessed vertex data elements span fewer cache lines.

2.4.2 Packing Factor

To identify whether an input graph will benefit from Hub Sorting, we develop Packing Factor, a metric that

quantifies graph skew and the sparsity of hub vertices3. Packing Factor directly computes the decrease in

sparsity of hubs after Hub Sorting. To compute Packing Factor, we compute the original graph’s hub working

set, which is the number of distinct cache lines containing hub vertices. Packing Factor is the ratio of the

original graph’s hub working set to the minimum number of cache lines in which the graph’s hubs can fit,

based solely on cache line capacity. If the original graph’s hub working set is much larger than the minimum

number of lines required for the hub vertices then Packing Factor is high and Hub Sorting is likely to provide

a large benefit by tightly packing the hubs. Algorithm 3 shows the steps involved in computing the hub

working set of the original graph (Lines 4-11) and after performing Hub Sorting (Line 12)

Algorithm 3 Computing the Packing Factor of a graph

1: procedure COMPUTEPACKINGFACTOR(G)
2: numHubs← 0
3: numHubCacheLinesOriginal ← 0
4: for CacheLine in vDataLines do
5: containsHub← False
6: for vtx in CacheLine do
7: if ISHUB(vtx) then
8: numHubs += 1
9: containsHub← True

10: if containsHub = True then
11: numHubCacheLinesOriginal += 1

12: numHubCacheLinesSorted ← CEIL(numHubs/VtxPerLine)
13: PackingFactor← numHubCacheLinesOriginal/numHubCacheLinesSorted
14: return PackingFactor

To understand the relationship between speedup from Hub Sorting and Packing Factor, we measured

speedup of Page Rank (GAP and Ligra) and Radii on the 8 input graphs from the main evaluation (Figure 2.2)

3We have open-sourced the code for Packing Factor computation and other reordering techniques at
https://github.com/CMUAbstract/Graph-Reordering-IISWC18
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and 7 additional input graphs from Konect [103]. Figure 2.4 shows the Hub Sorting speedup (excluding

reordering overhead) and Packing Factor of the input graph for the three applications on 15 graphs. The data

shows a strong correlation (r = 0.9) between speedup from Hub Sorting and Packing Factor of a graph.
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Figure 2.4: Relation between speedup from Hub Sorting and packing factor of input graph: Each point
is a speedup of an application executing on Hub Sorted graph compared to the original graph. Different
applications are indicated with different colors/markers. Hub Sorting provides significant speedup for
executions on graphs with high Packing Factor.

The data in Figure 2.4 show that a graph’s Packing Factor is a useful predictor of Hub Sorting’s speedup.

We empirically observe that graphs with a Packing Factor less than 4 do not experience a significant speedup

from Hub Sorting (maximum speedup of 1.25x). For such graphs, speedup is likely to be negated by the

overhead of Hub Sorting, leading to a net slowdown. Based on these data, we conclude that a system should

selectively perform Hub Sorting on graphs with packing factor greater than the threshold value of 4 only.

Selective Hub Sorting yields speedup for graphs with high Packing Factor and avoids degrading performance

for other graphs. We evaluate such a system in Section 2.4.4.
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2.4.3 Characterization of Speedup from Hub Sorting

We have seen that Hub Sorting provides significant speedups for certain input graphs and Packing Factor is

an effective metric to identify these graphs. To better understand why Hub Sorting improves performance, we

used native hardware performance counters [162] to analyze executions on reordered graphs. We measured

the reduction in Last Level Cache (LLC) misses and the reduction in Data TLB load misses leading to a page

walk. For these tests, we disabled hyperthreading and ran with only one thread per core (i.e., 28 threads) due

to limitations of the performance counter infrastructure [2]. Figure 2.5 shows the reduction in LLC misses

and DTLB load misses compared to Packing Factor of input graphs for the two applications from Ligra. The

data show that graphs with high Packing Factor get significant reduction in LLC misses and DTLB load

misses from Hub Sorting. The linear relation between LLC and DTLB load miss reduction and Packing

Factor is characteristic of the linear relation between speedup and Packing Factor in Figure 2.4. The data

suggest that the speedup from lightweight reordering are due to reduction in LLC misses (fewer slow DRAM

accesses) and a reduction in DTLB misses (fewer expensive page table walks).
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Figure 2.5: Reduction in LLC and DTLB misses due to Hub Sorting: Hub Sorting provides greater
reduction in LLC misses and DTLB load misses for graphs with high Packing Factor.

2.4.4 Selective Hub Sorting

A graph’s Packing Factor predicts whether Hub Sorting will yield a net speedup. Computing Packing

Factor (Algorithm 3) imposes a low-overhead since it involves a highly-parallelizable scan of vertex degrees.
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Figure 2.6 shows the net speedup (including Hub Sorting overhead) for a system that unconditionally reorders

a graph compared to a system that only selectively reorders a graph if the Packing Factor of the graph is

a higher than our empirical threshold of 4. Selective reordering preserves the end-to-end speedup from

unconditional reordering for graphs with high Packing Factor while avoiding slowdowns for graphs with low

Packing Factor. Computing Packing Factor imposes negligible overhead 4, making selective reordering a

practical alternative to unconditional Hub Sorting.
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Figure 2.6: End-to-end speedup from selective Hub Sorting: Input graphs have been arranged in in-
creasing order of Packing Factor. Selective application of Hub Sorting based on Packing Factor provides
significant speedups on graphs with high Packing Factor while avoiding slowdowns on graphs with low
Packing Factor.

2.5 Related Work

Prior research related to this work spans five categories - graph reordering, cache blocking, vertex scheduling,

and graph partitioning.

Graph Reordering: There has been extensive research in developing graph reordering techniques of varying

levels of effectiveness and sophistication. Sophisticated graph reordering techniques such as Gorder [164],

ReCALL [108], Layered Label Propagation (LLP) [34], Nested Dissection [110], SlashBurn [117] provide

significant speedups to the application but incur extremely high overheads. The high overhead of these

techniques are justified only in the cases where the same input graph is expected to be processed multiple

times. In contrast to such high-overhead reordering techniques, recent graph reordering proposals have
4Across input graphs, computing the Packing Factor comprised at most 0.1% of the runtime on the original graph
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focused on keeping the overhead of reordering low. Karantis et. al. [92] proposed a parallel implementations

of common graph reordering techniques – Reverse Cuthill-McKee (RCM) and Sloan – to reduce reordering

overheads. While parallelization improved the performance of reordering by more than 5x, the authors

report an end-to-end speedup of 1.5x when performing 100 Sparse Matrix Vector (SpMV) iterations. Rabbit

Ordering [13], which was studied in this work, was shown to provide better end-to-end performance

improvements compared to parallel RCM. These research efforts support the need for effective lightweight

reordering techniques to support application use cases where the assumption of amortizing high reordering

overhead across multiple trials is not guaranteed.

Cache blocking: Cache blocking is an alternate technique to improve locality of graph processing appli-

cations. Zhang et. al. [176] recently proposed CSR segmenting – a technique to improve temporal locality

of vertex data accesses by breaking the original graph into subgraphs that reduce the irregularity of vertex

data accesses. The computation from each subgraph are buffered and later merged to produce the final

result. Similar approaches were used in prior work aiming to exploit reuse at the LLC [75, 160]. Recent

proposals [28,37] have extended the idea of partitioning the graph and applied it to partitioning data transfers

between vertices in Sparse Matrix multiplying Dense Vector (SpMV) application such as Page Rank. While

blocking based techniques are effective in improving application performance, they require modifying the

application unlike graph reordering techniques.

Vertex scheduling: Graph reordering techniques improves locality by optimizing the layout of graph data

structures. The locality of graph applications can also be improved by changing the order of processing

vertices. Prior work [125, 134, 177] have shown that traversing the edges of a graph along a Hilbert curve

can create locality in the both the source vertex read from and the destination vertex written to. However,

a key challenge with these techniques is that they can complicate parallelization [28, 176]. HATS [128]

is a dynamic vertex-scheduling architecture that improves cache locality of vertex data accesses. HATS

runs hardware Bounded Depth First Search (BDFS) to schedule vertices, yielding locality improvements

in community-structured graphs. Graph reordering is primarily a data layout optimization and, hence, is

complementary to vertex scheduling.

Graph Partitioning: Graph partitioning is commonly applied in the context of distributed graph processing.

The goal of graph partitioning is to reduce inter-node communication by creating graph partitions with

minimal number of links between partitions [72, 77, 122, 151]. Graph partitioning has similarities to

reordering since the partitioning problem can be viewed as trying to maximize locality within a node.
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Additionally, sophisticated graph partitioning techniques impose significant time and space overheads [93].

Prior work [156,163] have proposed lightweight graph partitioning techniques that allow applying the benefits

of graph partitioning to streaming distributed graphs. Research efforts in lightweight partitioning further

highlight the importance and need for graph preprocessing steps to incur low overhead.

Graph partitioning has also been studied in the context of locality-optimization for single-node shared-

memory systems. Sun et. al. [157] proposed using partitioning to improve temporal locality by assigning all

the in-neighbors of every vertex into a separate partition. The proposed technique requires modifications to the

algorithms and the data structures to handle a large number of partitions. GridGraph [183], X-stream [149],

Graphchi [105], and Turbograph [79] use forms of partitioning to optimize the disk to memory boundary.

While these systems allow scaling graph processing to larger graphs beyond the main memory capacity, prior

work [176] has shown that for graph which fit in memory, applying the optimizations directed at reducing disk

accesses cannot be applied to optimize random accesses to main memory. Grace [146] is a shared-memory

graph management system that showed that partitioning the graph provided greater opportunity for reordering

algorithms to optimize locality. While graph partitioning techniques share similarity to reordering, they often

require changes to graph data structures and computations unlike graph reordering.

2.6 Discussion

Packing Factor is a simple, low-cost analytical model that accurately predicts speedups from Hub Sorting

(Figure 2.4). The high accuracy of the Packing Factor metric is a key factor in the effectiveness of selective

graph reordering which is able to preserve the speedups of unconditional reordering while also ensuring

that the worst case performance degradation is less than 0.1% (Figure 2.6). The above results show that

Packing Factor is an effective metric for power-law input graphs and degree-based reordering schemes (such

as Hub Sorting). The natural next question is to determine whether Packing Factor can generalize to 1)

non-power-law graphs and 2) different reordering schemes beside degree-based reordering.

Figure 2.7a shows the speedups from Hub Sorted input graphs compared to the original ordering of the

graphs on the PageRank graph application. For this experiment, in addition to power-law input graphs, we

also report results for graphs like road, simulation, and random networks which do not have a power-law

degree distribution. The data show that these non-power-law graphs do not benefit from Hub Sorting.

Non-power-law graphs do not have any heavily connected "hub" vertices so techniques like Hub Sorting
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which group hub vertices together are ineffective. Importantly, the Packing Factor value for these graphs

is low which enables a selective graph reordering system to correctly skip reordering for non-power-law

graphs. This result indicates that the definition of hubs in the Packing Factor algorithm (Algorithm 3) is

robust enough to handle non-power-law graphs in addition to power-law graphs.
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Figure 2.7: Generalizability of the Packing Factor metric: (a) Packing Factor is able to accurately predict
reordering benefits for non-power-law graphs (b) Packing Factor requires modifications to accurately predict
reordering benefits for community-structure based reordering schemes

We studied the generalizability of Packing Factor metric to other non-degree-based reordering techniques

by studying the predictive power of Packing Factor in estimating speedups from Rabbit Ordering. As

described in Section 2.2.1, Rabbit Ordering leverages the property of community structure in graphs to reorder

the graphs such that vertices belonging to the same community have consecutive vertex IDs. Figure 2.7b

shows speedups from Hub Sorting and Rabbit Ordering on the PageRank application. The data shows that

while Packing Factor is an effective predictor for Hub Sorting speedups it does not work as well for Rabbit

Ordering. With Rabbit Ordering, highly connected hub vertices may not may not be assigned consecutive

IDs (instead, preference is given to assigning consecutive IDs to vertices within a community). Since the

Packing Factor metric only tracks placement of hub vertices before and after reordering, the Packing Factor

metric as defined in Algorithm 3 is unable to accurately predict speedups from Rabbit Ordering. The reduced

effectiveness of Packing Factor for Rabbit Ordering is not a cause for significant concern because Rabbit

Ordering is an expensive reordering technique that is not well suited for selective graph reordering. As

Figure 2.2 shows, Rabbit Ordering almost never provides a net speedup after including reordering overheads

and, therefore, there is little motivation for building a Packing Factor variant for Rabbit Ordering. However, if

an analytical model for predicting speedups from Rabbit Ordering is desired for applications besides selective



CHAPTER 2. PREDICTING GRAPH REORDERING SPEEDUPS WITH PACKING FACTOR 36

reordering, then the primary goal should be to devise an inexpensive way to identify the communities in a

graph (and check whether they are assigned assigned consecutive IDs before and after reordering).

In conclusion, this chapter showed that, after accounting for overheads, graph reordering is not always a

performance optimization (Figure 2.2). Through extensive characterization, we categorized different graph

applications based on their expected benefit from graph reordering (Section 2.3). Finally, we proposed

the Packing Factor metric that accurately predicts benefits from graph reordering (Figure 2.6) and enables

selective graph reordering; essentially ensuring that graph reordering never becomes a performance de-

optimization.



Chapter 3

Improving Locality and Scalability with

RADAR

So far we have looked at the problem of poor cache locality of graph analytics workloads. In the previous

chapter, we saw how Graph Reordering techniques such as Degree Sorting (assigning vertices consecutive

IDs in decreasing order of vertex degrees) helps improve cache locality by improving spatial and temporal

locality of vertex data accesses. In addition to poor cache locality, graph analytics workloads also suffer from

heavy synchronization overheads due to the need to use atomic updates (Section 1.4.2). Data duplication, a

popular approach to eliminate atomic updates by creating thread-local copies of shared data, incurs extreme

memory overheads when applied to graph analytics because of the large sizes of typical input graphs. For

example, a graph with 100 million vertices processed by 32 threads would incur an untenable duplication

overhead of ∼12GB for the shared vertex data (assuming 4 bytes per vertex). Fortunately, the power-law

degree distribution (common in real-world graphs) allows a more memory-efficient data duplication strategy

by duplicating only the highly-connected "hub" vertices. Duplicating only the hub vertex data eliminates

a majority of the atomic updates while avoiding the memory bloat of naive full-graph data duplication.

However, even this memory-efficient data duplication strategy has a lingering source of inefficiency – to

identify whether a vertex is a hub or not. Since the vertex ordering of a graph may be arbitrary, hub vertices

may be spread across the vertex ID space requiring the memory-efficient data duplication implementation to

pay a cost (to determine whether a vertex is a hub) on every update.

The main insight of this work is that the combination of memory-efficient data duplication and Degree

37
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Sorting are mutually enabling optimizations. Degree Sorting optimizes power-law-specific memory-efficient

data duplication by eliminating the costs associated with identifying hub vertices (in a reordered graph, hub

vertices have consecutive IDs in the beginning of the vertex ID space). Data duplication optimizes Degree

Sorting by eliminating any false sharing caused by packing the most heavily-accessed hub vertices in the

same cache line. In this chapter, we present our work called RADAR 1 which combines duplication and

reordering into a single graph analytics optimization, eliminating the costs of both optimizations and reaping

the benefits of each [18]. RADAR improves performance of graph applications by reducing the number

of atomic updates and improving locality of memory accesses, providing speedups of up to 165x (1.88x

on average) across a broad range of graph applications and power-law input graphs. In addition to these

performance improvements, RADAR also offers two other important benefits. First, RADAR eliminates

the cost of atomic updates in graph applications without compromising work-efficiency in contrast to the

state-of-the-art solution for eliminating atomic updates – Push-Pull direction switching [27, 32, 154]. The

Push-Pull optimization avoids atomic updates in graph applications by redundantly processing extra edges,

trading off work-efficiency for a reduction in atomics. Second, by avoiding the need to switch to the pull

mode, RADAR requires only half of the memory footprint of Push-Pull because RADAR only needs to store

the CSR (for push execution) whereas Push-Pull requires storing both the CSR and the CSC. The reduced

memory requirement allows RADAR to process a substantially larger input graph than push-pull, on a single

machine with a fixed memory capacity.

3.1 The Case for Combining Duplication and Reordering

We first quantify the extent to which atomic updates impact the performance of parallel graph applications.

Next, we show the tension between locality improvements from graph reordering (e.g., Degree Sorting) and a

commensurate performance degradation due to false sharing in a parallel execution. These costs motivate

RADAR, which synergistically combines duplication and reordering to reduce atomic updates and improve

cache locality of vertex data accesses.

1Due to the mutually enabling combination of Duplication and Reordering, we name our system RADAR (Reordering Assisted
Duplication/Duplication Assisted Reordering)
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3.1.1 Atomics Impose Significant Overheads

Atomic instructions impose a significant penalty on graph applications [20,21,22,31,171,173,174]. Compared

to other kinds of graphs, the performance cost of atomic updates is higher while processing power-law graphs

because the highly-connected hub vertices are frequently updated in parallel. To motivate RADAR, we

experimentally measured the performance impact of atomic updates (evaluation setup in Section 3.3.3). We

compare the performance of a baseline execution with a version that replaces atomic instructions with plain

loads and stores. To ensure that the latter version produces the correct result and converges at the same rate

as the baseline, we execute each iteration twice: once for timing without atomics, and once for correctness

with atomics (but not timed).
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Figure 3.1: Performance improvement from removing atomic updates in graph applications

Figure 3.1 shows the impact of atomic updates for several applications processing PLD, a power-law

graph. The data show the performance potential of eliminating atomic updates in different applications.

PageRank-Delta (PR-Delta) and Betweenness Centrality (BC) see a large improvement, indicating a high

cost due to atomics. Breadth-first Search (BFS) and Radius Estimation (Radii) see a smaller improvement.

These two algorithms allow applying the Test-and-Test-and-Set optimization [150], which avoids atomics

for already-updated vertices in the baseline. Across the board, the data show the opportunity to improve

performance by eliminating atomic updates.

3.1.2 Data Duplication for Power-law Graphs

Data duplication is a common optimization used in distributed graph processing systems [118], where vertex

state is replicated across machines to reduce inter-node communication. Recent distributed graph processing

systems [40, 72, 143] have leveraged the power-law degree distribution, common to many real world graphs,

to propose data duplication only for the highly connected hub vertices. Duplicating only the hub vertex data
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improves memory efficiency by incurring the overheads of duplication only for the small fraction of hub

vertices (that contribute the most to inter-node communication). In this work, we explore data duplication of

hub vertices in power-law graphs (henceforth referred to as HUBDUP) in the context of single node, shared

memory graph processing to reduce inter-core communication caused by atomic updates. Specifically, we

create thread-local copies of hub vertex data which allows threads to independently update their local copy of

the vertex data without using atomic instructions. Later, threads use a parallel reduction to combine their

copies, producing the correct final result.

The hub-specific duplication strategies proposed in recent distributed graph processing systems [40,

72, 143] cannot be directly applied to the shared memory setting because of fundamental differences in

the primary performance bottlenecks. The primary bottleneck in distributed graph processing is expensive

inter-node communication [152]. To reduce communication over the network, distributed graph processing

systems require sophisticated preprocessing algorithms to effectively partition a graph’s edges across nodes

in addition to duplicating hub vertex data. The high preprocessing costs of these algorithms are harder to

justify in the context of shared memory graph processing due to the relatively low cost of communication

(between cores within a processor). The primary bottleneck in single node, shared memory graph processing

is the latency to access main memory (DRAM) [152, 176]. Therefore, efficient data duplication for shared

memory graph processing must ensure that the increased memory footprint from duplication can be serviced

from the processor’s Last Level Cache (LLC). Otherwise, the performance benefits of eliminating atomic

updates would be overshadowed by an increase in DRAM accesses. The limited capacity of typical LLCs

(order of MBs) allows shared memory graph processing frameworks to duplicate far fewer vertices than

distributed graph processing systems.

Despite the significant overhead imposed by atomic instructions (Figure 3.1), popular shared memory

graph processing frameworks [27,145,154,160] do not use data duplication (including HUBDUP). Achieving

high performance from HUBDUP requires careful implementation to avoid excessive overheads. A key

challenge facing any HUBDUP implementation is that a hub vertex may initially have an arbitrary position

in the vertex data array. A memory-efficient HUBDUP implementation must dynamically identify whether

a vertex being updated is a hub or not at runtime. Consequently, a HUBDUP implementation will remain

sub-optimal; while HUBDUP successfully eliminates atomics for hubs, its incurs a run time cost to identify

those hubs.



CHAPTER 3. IMPROVING LOCALITY AND SCALABILITY WITH RADAR 41

3.1.3 Graph Reordering can Increase False Sharing

Graph analytics workloads are notorious for their poor cache locality [28, 128, 164, 171, 176]. Reordering the

vertices in a graph in decreasing degree order (which we refer to as Degree Sorting) is an effective locality

optimization strategy for graphs with power-law degree distributions. Degree Sorting causes the vertices

with the highest degrees (i.e., hubs) to be assigned at the start of the vertex data array. An access to a hub

vertex’s data also caches the data for the other hubs in the same cache line. Bringing more hubs into the

cache increases the likelihood that future requests to hub vertices hit in the cache, improving performance.

Degree Sorting is appealing because it is a preprocessing step that requires no modification to application

code. While more sophisticated graph ordering techniques exist [34, 92, 164], Degree Sorting has the benefit

of having a relatively low preprocessing overhead. The high preprocessing cost of other approaches negates

the benefit of reordering [13, 17].
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Figure 3.2: False sharing caused by Degree Sorting: Reordering improves performance of a single-
threaded execution but fails to provide speedups for parallel executions.

Figure 3.2 shows the performance improvements offered by reordering vertices in decreasing in-degree

order while processing the PLD power-law graph, for different thread counts. In a single-threaded execution,

Degree Sorting’s locality optimization effectively improves performance. However, in a parallel execution

with 56 threads, Degree Sorting causes a slowdown. False sharing causes the parallel performance degradation,

because Degree Sorting lays the most commonly accessed vertices (hubs) consecutively in memory. As

threads compete to access the cache lines containing these vertices, they falsely share these lines, suffering

the latency overhead of cache coherence activity 2. Single-threaded executions show that Degree Sorting is

effective, but in a highly parallel execution the cost of false sharing exceeds the benefit of Degree Sorting,

leading to performance loss.

2Note that the amount of true sharing is invariant to graph’s vertex ordering and only depends on the structure of the graph.
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3.1.4 Benefits of Combining Duplication and Reordering

The previous sections show that optimizations targeting a reduction in atomic updates and improvement in

cache locality both have limitations. HUBDUP reduces atomic updates but incurs a cost to detect the hub

vertices at runtime. Degree Sorting improves cache locality for a single-threaded execution, but suffers from

false sharing in a parallel execution.

Our main insight in this work is that combining the two optimizations — i.e., HUBDUP on a degree-sorted

graph — alleviates the bottleneck inherent in each. Reordering the input graph in decreasing degree-order

locates hubs contiguously in the vertex array, enabling a HUBDUP implementation to identify the hub

vertices at a lower cost. Duplicating vertex data for hubs eliminates the false-sharing incurred by Degree

Sorting, because each thread updates a thread-local copy of hub vertex data. Table 3.1 shows an overview of

existing techniques with their strengths and weaknesses, including RADAR, the technique we develop in this

work.

Optimization Summary Strengths/Weaknesses
HUBDUP Duplicating only hub data + No atomics for hub vertices

(in original graph order) - Cost for identifying the hubs
Degree Sorting Reorder graph in decreasing + Improves cache locality

degree order (no app change) - Introduces false sharing
RADAR Duplicating only hub data on a

degree sorted graph
+ No atomics for hubs (with easy hub detection)

+ Improves cache locality (no false sharing on hub updates)

Table 3.1: Summary of optimizations: RADAR combines the benefits of Degree Sorting and HUBDUP
while eliminating the overheads of each

3.2 RADAR: Combining Data Duplication and Graph Reordering

RADAR combines the mutually-beneficial HUBDUP and Degree Sorting optimizations, providing better

performance compared to applying either optimization in isolation. To motivate RADAR’s design, we first

describe the space of HUBDUP designs, characterizing the fundamental costs associated with any HUBDUP

implementation. We then discuss how Degree Sorting reduces the inefficiencies of HUBDUP. Finally, we

describe the RADAR implementation that combines reduction in atomic updates with improvements in cache

locality to improve performance of graph applications.
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3.2.1 Sources of Inefficiency in HUBDUP

Power-law graphs present an opportunity to develop memory-efficient data duplication implementations

(HUBDUP). Despite the low memory overhead of duplicating hub vertex data only, HUBDUP’s performance

is sub-optimal. Specifically, implementing HUBDUP requires addressing four key challenges.

Update
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2) Update local copy without atomics 
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(c) Reduction of values in thread-local copies

Figure 3.3: HUBDUP design: Essential parts of any HUBDUP implementation. Hub vertices of the graph
are highlighted in red.

Challenge #1: Locating hub vertices. Hub vertex data may be arbitrarily located in the vertex data

array, because HUBDUP makes no assumption about input graph ordering. A HUBDUP implementation

must identify whether a vertex is a hub. One possible implementation is to inspect the entire graph in advance

and store an index (i.e., a bitvector) of hub vertex locations.

Challenge #2: Detecting hub vertices. HUBDUP limits memory overheads by duplicating only hub

vertex data. A HUBDUP implementation must dynamically check whether a vertex is a hub or not; hub

updates modify a thread-local copy, while non-hub updates atomically update the vertex data array. An

implementation can use the bitvector mentioned above to efficiently make this hub check on every vertex

update at run time, as illustrated in Figure 3.3a

Challenge #3: Updating the thread-local hub copies. Hub updates in HUBDUP are applied to a

thread-local copy of the hub’s data and do not use atomic instructions. A memory efficient HUBDUP

implementation must store hub duplicates contiguously in memory (e.g., LocalCopies in Figure 3.3b).

However, packing hub vertices in thread-local copies precludes using a hub vertex’s ID as an index to the

thread-local copies. HUBDUP requires mapping a hub vertex’s ID to its index in the thread-local copies (as
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in Figure 3.3b). The mapping function must be called on every hub update as shown in Figure 3.3a.

Challenge #4: Reducing updated hub copies. At the end of an iteration, partial hub updates accumu-

lated in thread-local copies must be reduced and stored in the hub’s entry in the vertex data array (Figure 3.3c).

Locating a hub copy’s original location in the vertex array requires an inverse mapping from its index in the

array of thread-local copies back to its index in the original vertex data array.

A key motivation for RADAR is achieving the benefits of HUBDUP without incurring the costs of the

above challenges.

3.2.2 Degree Sorting Improves HUBDUP

Degree Sorting improves HUBDUP by reducing the costs associated with each challenge. Most of the cost

of HUBDUP stems from the arbitrary location of hubs in the vertex data array. Degree Sorting solves this

problem by arranging vertices in decreasing in-degree order. A degree-sorted graph avoids the first two

challenges: identifying a hub requires simply checking that its index is lower than a constant threshold

index marking the boundary of hub vertices. Indexing thread-local copies is also simple because hubs are

contiguous. A hub’s vertex ID can be used to directly index into the thread-local copies. Therefore, Degree

Sorting eliminates the cost of building and accessing the maps and inverse maps from challenges #3 and #4.

3.2.3 HUBDUP Improves Degree Sorting

Degree Sorting improves cache locality by tightly packing high-degree hubs in the vertex data array. Figure 3.2

demonstrates the benefit of locality improvements for single-threaded graph applications. However, contiguity

of hubs causes an unnecessary increase in costly false sharing because different threads frequently read and

update the small subset of cache lines containing hubs. Thread-local hub copies in HUBDUP avoid false

sharing because a thread’s hub updates remain local until the end of an iteration.

3.2.4 RADAR = HUBDUP + Degree Sorting

RADAR combines the best of HUBDUP and Degree Sorting by duplicating hub vertex data in a degree sorted

graph. Duplication mitigates false sharing and degree sorting keeps the overhead of duplication low. The key

motivation behind RADAR is the observation that HUBDUP and Degree Sorting are mutually enabling. The
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key contribution of RADAR is the tandem implementation of these techniques, which realizes their mutual

benefits.

3.2.5 Implementation Details

We now describe the low-level implementation details and optimizations of RADAR. We also cover the imple-

mentation details of a HUBDUP baseline because, to the best of our knowledge, an efficient implementation

of HUBDUP does not exist in the literature.

HUBDUP design decisions: We designed and implemented HUBDUP with the aim of keeping the

space and time overheads of duplication low. To identify hubs (challenge #1) we collect the in-degrees of

all vertices and then sort the in-degrees to find the threshold degree value for a vertex to be classified as a

hub. We use GCC’s __gnu_parallel::sort to sort indices by degree efficiently. Note that sorting indices

is much simpler than re-ordering the graph according to the sorted order of indices (Degree Sorting). We

use the hMask bitvector to dynamically detect hubs (i.e., challenge #2), setting a vertex’s bit if its degree is

above a threshold. hMask has a low memory cost: a 64M-vertex graph requires an 8MB bitvector to track

hubs, which is likely to fit in the Last Level Cache (LLC). We use an array to implement the mapping from a

hub’s vertex ID to its index into the thread-local copies and another array for the inverse mapping. HUBDUP

populates both arrays in advance.

Optimizing reduction costs: After each iteration, both HUBDUP (and RADAR) must reduce updated

thread-local hub copies and store each hub’s reduction result in its entry in the vertex array. Only a subset

of hub vertices may need to be reduced in a given iteration because frontier-based applications update the

neighbors of vertices in the frontier only (Algorithm 1). An efficient implementation of HUBDUP should

avoid reducing and updating hubs that were not updated during that iteration. HUBDUP and RADAR

explicitly track an iteration’s updated hub vertices with a visited array that has an entry for each hub. An

update to a hub (by any thread) sets the corresponding entry in the visited using the Test-and-Test-and-Set

operation (if a hub’s visited bit is set once in an iteration, it is never set again until the next iteration). After

an iteration, HUBDUP reduces the thread-local, partial updates of each hub that has its visited entry set

and does nothing for other hubs. This visited optimization to reduction improved RADAR performance by

up to 1.25x (geometric mean speedup of 1.02x).
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Selecting hub vertices for duplication: Due to limited Last Level Cache (LLC) capacity, duplicating

all the hubs 3 in a graph may impose excessive memory overheads. Instead of duplicating all hubs, HUBDUP

and RADAR should duplicate only a subset of hubs (hub vertices with the highest degrees) such that the sum

of the sizes of all threads’ duplicates is less than the capacity of the LLC (Last Level Cache). We demonstrate

the importance of duplicating only a subset of hubs by comparing our LLC-capacity-guided duplication

strategy (“CACHE-RADAR”) to a variant that duplicated all hubs (“ALL-HUBS-RADAR”). Figure 3.4

shows their relative performance running all applications on DBP, the smallest graph in our dataset. The data

show that CACHE-RADAR consistently outperforms ALL-HUBS-RADAR, with better LLC locality for

all threads’ hub duplicates. The performance gap is likely to grow with graph size, as more hub duplicates

compete for fixed LLC space. Our CACHE-RADAR design most effectively uses the scarce LLC space to

keep only the highest-degree hubs’ duplicates cached.

PR PR-Delta Local-TriCnt BC BFS Radii
Applications

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

S
p

ee
du

p

Graph - DBP

PUSH

+ALL-HUBS-RADAR

+CACHE-RADAR

Figure 3.4: Performance of RADAR with different amounts of duplicated data: The duplication over-
head of ALL-HUBS-RADAR are significant even for the smallest input graph.

numHubs =
S∗LLC_Size

(T ∗ elemSz)+ δ
(3.1)

This result demonstrates the importance of calibrating HUBDUP and RADAR to the properties of the

machine (LLC size). We use Equation 1 to calculate the number of hubs to duplicate in HUBDUP and

RADAR. S is a scaling factor (between 0 and 1) that controls the fraction of LLC to be reserved for storing

duplicated data, T is the number of threads used, and elemSz is the size (in bytes) of each element in the

vertex data array. The δ parameter in the denominator of Equation 1 accounts for memory overheads in

HUBDUP and RADAR. Both RADAR and HUBDUP use a visited boolean array to optimize reduction

(Section 3.2.5). We set δ = 1, because the visited array has an entry for each hub. For HUBDUP,

maintaining the hMask bitvector and maps to and from a hub’s duplicate’s location are additional memory

3As in prior work [176], a hub is defined as a vertex with degree greater than the average degree.
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costs and we set δ = 3. On varying the S parameter, we empirically determined that S = 0.9 often provided

the best performance across applications and graphs.

3.3 Performance Improvements with RADAR

This section evaluates the speedups from RADAR on a range of graph applications and input graphs. We first

describe our graph applications, input graphs, and evaluation setup before showing RADAR’s performance

results.

3.3.1 Graph Applications

We evaluate the performance of RADAR 4 across five applications from the Ligra benchmark suite [154] and

one application from the GAP [27] benchmark suite. All the applications were compiled using g++-6.3 with

-O3 optimization level and use OpenMP for parallelization. We provide a brief description of the execution

characteristics of each application, identifying the vertex data array and atomic update operation performed

on vertex data.

PageRank (PR): PR is a popular graph benchmark that iteratively refines per-vertex ranks (vertex data)

until the sum of all ranks drops below a convergence threshold. The application processes all the vertices in

a graph every iteration and, hence, performs many random writes to the vertex data array. PR uses atomic

instructions to increment vertex ranks of destination vertices based on properties of neighboring source

vertices.

PageRank-delta (PR-Delta): PR-Delta is a variant of PageRank that does not process all the vertices of

a graph each iteration. Instead, PR-Delta only processes a subset of vertices for which the rank value changed

beyond a δ amount, which improves convergence [118]. Even though PR-Delta does not process all vertices

every iteration, the application processes dense frontiers during the initial iterations of the computation which

generate many random writes to the vertex data array. PR-Delta uses atomic instructions in a similar fashion

to PR.

Betweenness Centrality (BC): BC iteratively executes a BFS kernel from multiple sources to count the

number of shortest paths passing through each vertex (vertex data). Most iterations of BC process sparse

frontiers (i.e. frontier contains a small fraction of total vertices). BC also performs a transpose operation

4Source code for RADAR (and all the other optimizations) is available at https://github.com/CMUAbstract/RADAR-Graph
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(exchanging incoming neighbors with outgoing neighbors and vice versa) and, hence, is an application that

needs to store two CSRs even in a baseline push-based execution. BC uses atomic instructions to increment

the number of shortest paths passing through each vertex.

Radii Estimation (Radii): Graph Radii estimation approximates the diameter of a graph (longest

shortest path) by performing simultaneous BFS traversals from many randomly-selected sources. Radii uses

a bitvector (vertex data) to store information about BFS traversals from multiple source vertices. Atomic

instructions are used to atomically perform a bitwise-OR on the vertex data array. Unlike applications

discussed so far, subsequent updates to the vertex data array might produce no change to the vertex data array.

Therefore, Radii uses the Test-and-Test-and-Set (T&T&S) optimization [150] to avoid executing atomic

instructions for updates that will produce no change.

Breadth First Search (BFS): BFS is an important graph processing kernel that is often used as a

subroutine in other graph algorithms. The kernel iteratively visits all the neighbors reachable from a particular

source, identifying a parent for each vertex (vertex data). Similar to Radii, BFS also uses the T&T&S

optimization to atomically set a parent for each vertex.

Local Triangle Counting (Local-TriCnt): Local Triangle Counting identifies the number of triangles

(or cliques of size 3) incident at each vertex (vertex data) of an undirected graph and is a variant of the

Triangle Counting benchmark that only reports the total count of triangles. Our Local-TriCnt implementation

extends the optimized Triangle Counting implementation from GAP which performs Degree Sorting on

the input graph to achieve an algorithmic reduction in the number of edges to be processed. Finding the

number of triangles per-vertex allows computing a graph’s local clustering coefficients which has applications

in identifying tightly-knit communities in social networks [56]. Local-TriCnt uses atomic instructions to

increment the number of triangle discovered for each vertex.

3.3.2 Input graphs

To evaluate RADAR’s performance, we use large, real-world, power-law input graphs that have been

commonly used in other academic research. We also include the kronecker synthetic graph in our evaluation

due to their popularity in the graph500 community [133]. Table 3.2 lists key statistics for the graphs in our

dataset. Unless noted otherwise, we use the original vertex data ordering of the input graph as provided by

the authors of the graph dataset for our baseline executions.
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DBP GPL PLD TWIT MPI KRON WEB SD1
Reference [103] [71] [126] [104] [103] [27] [51] [126]
|V | (in M) 18.27 28.94 42.89 61.58 52.58 67.11 50.64 94.95
|E| (in B) 0.172 0.462 0.623 1.468 1.963 2.103 1.93 1.937
Avg. Degree 9.4 16 14.5 23.8 37.3 31.3 38.1 20.4
% of Hubs 11.75 20.54 14.72 11.30 9.52 8.43 5.56 10.61

Table 3.2: Statistics for the evaluated input graphs

3.3.3 Evaluation Platform and Methodology

We performed all of our experiments on a dual-socket server machine with two Intel Xeon E5-2660v4

processors. Each processor has 14 cores, with two hardware threads each, amounting to a total of 56 hardware

execution contexts. Each processor has a 35MB Last Level Cache (LLC) and the server has 64GB of DRAM

provided by eight DIMMs. All experiments were run using 56 threads and we pinned the software thread to

hardware threads to avoid performance variations due to OS thread scheduling. To further reduce sources of

performance variation, we also disabled the “turbo boost” DVFS features and ran all cores at the nominal

frequency of 2GHz.

We ran 4 trials for the long-running applications (PageRank and Local Triangle Counting) in our

evaluation set, and 11 trials for all the other applications. While computing the mean time, we exclude the

timing for the first trial to allow processor caches to warm up. For the source-dependent BFS application, we

select a source vertex belonging to the largest connected component in the graph. We maintain a mapping

between vertex IDs before and after reordering to ensure that source-dependent applications running on the

reordered graphs use the same source as a baseline execution on the original graph [27].

3.3.4 Performance Analysis of RADAR

To illustrate the benefits of combining HUBDUP and Degree Sorting, we compare RADAR’s performance

with executions that either perform HUBDUP or Degree Sorting. Figure 3.5 shows the performance of

HUBDUP, Degree Sorting, and RADAR relative to a baseline, push-style execution of graph applications

across 8 input graphs. We report the key findings from the results below:

Finding 1: RADAR outperforms HUBDUP and Degree Sorting. For PR, PR-Delta, Local-TriCnt,

and BC, RADAR consistently provides higher speedups than only performing HUBDUP or Degree Sorting.

The results highlight the synergy between HUBDUP and Degree Sorting which is exploited by RADAR to

provide additive performance gains.
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Figure 3.5: Comparison of RADAR to HUBDUP and Degree Sorting: RADAR combines the benefits of
HUBDUP and Degree Sorting, providing higher speedups than HUBDUP and Degree Sorting applied in
isolation.

Finding 2: HUBDUP offers speedup in graphs with good ordering of hubs. For the four applications

mentioned above, HUBDUP only provides speedups on three input graphs - DBP, MPI, and WEB - often causing

a slowdown for the other input graphs. HUBDUP performs well in the DBP, MPI, and WEB graphs because

most hub vertices are consecutively ordered in these graphs. Due to the consecutive ordering of hub vertices,

accesses to key HUBDUP data structures – the hMask bitvector and the mapping from hub vertex ID to

locations in thread-local copies – benefit from improved locality, driving down the costs of an HUBDUP

execution.
DBP GPL PLD TWIT MPI KRON WEB SD1

PR Speedup 2.06x 0.85x 0.84x 0.86x 1.49x 0.62x 11.91x 0.90x
Unique words 17.03K 22.39K 64.32K 68.80K 13.03K 71.38K 6.02K 53.56

Table 3.3: Number of unique words in the hMask bitvector containing hub vertices: HUBDUP offers
the highest speedups for graphs in which hubs map to the fewest number of unique words in the bitvector.

Table 3.3 demonstrates the relation between HUBDUP performance and the vertex order of the graph

by showing speedup from HUBDUP for PageRank (PR) along with the number of unique words in the

hMask bitvector corresponding to hub vertices. For the same number of hubs (a machine-specific property as

described in Section 3.2.5), hubs in the DBP, MPI, and WEB graphs map to fewer words in the hMask bitvector

(an 8B word in the bitvector encodes information for 64 vertices). Fewer words associated with hub vertices

improves locality of hMask accesses and allows HUBDUP to provide speedups. The results indicates that

HUBDUP is likely to provide speedups for input graph orderings where hub vertices have nearly consecutive

IDs.
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Finding 3: Degree Sorting can lead to performance degradation. Degree Sorting causes slowdowns

in PR, PR-Delta, and BC for certain input graphs. Section 3.1.3 showed that the performance degradation is

due to increased coherence traffic caused by false sharing between threads updating hub vertex data. The

slowdown from increased coherence traffic is higher for applications that update more vertices each iteration

(PR and PR-Delta) because these applications have a higher likelihood of simultaneously updating hub

vertices from different threads. RADAR provides speedups in these applications by duplicating hub vertex

data to avoid an increase in coherence traffic.

Finding 4: Degree Sorting provides significant speedups for Local-TriCnt. The results for the PLD,

TWIT, and WEB graphs on Local-TriCnt show high speedups from Degree Sorting. The high speedups are

due to an algorithmic reduction in the number of edges that need to be processed to identify all the triangles

in the graph. The GAP implementation of Triangle Counting already uses Degree Sorting. We normalize

data to a baseline without Degree Sorting to show the algorithmic improvement from reordering. RADAR

provides additional speedups over the algorithmic improvements from Degree Sorting by eliminating atomic

instructions, improving performance by 4.7x on average over Degree Sorting.

Finding 5: Degree Sorting performs best for BFS and Radii. In contrast to Finding 1, the results for

BFS and Radii show that Degree Sorting consistently outperforms RADAR and HUBDUP. BFS and Radii

use the Test-and-Test-and-Set (T&T&S) optimization, which reduces the cost of atomic updates for these

applications (Figure 3.1). The T&T&S optimization also helps avoid an increase in coherence traffic from

Degree Sorting, thereby improving locality. For BFS and Radii, the small improvements from eliminating

atomic updates do not justify the cost of duplicating hub vertex data causing RADAR to provide lower

performance that Degree Sorting.
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Figure 3.6: Performance improvements for BFS without the T&T&S optimization: In the absence of
the T&T&S optimization, RADAR outperforms Degree Sorting.

To demonstrate the relation between reduced speedup from RADAR and the T&T&S optimization, we
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studied a BFS implementation that does not use T&T&S. Figure 3.6 shows the performance of Degree Sorting

and RADAR for such a BFS implementation. In the absence of T&T&S, the performance results for BFS

mirror the results for PR and PR-Delta applications, showing slowdowns with Degree Sorting and speedups

with RADAR. While BFS and Radii would never be implemented without the T&T&S optimization, this

experiment was useful for showing that RADAR is most effective for applications that cannot use T&T&S.

3.4 Advantages of Using RADAR Compared to Push-Pull

RADAR combines the benefits of HUBDUP and Degree Sorting and outperforms either optimization applied

in isolation (Figure 3.5). In this section, we discuss the two advantages offered by RADAR over the

current state of the art for eliminating atomic updates in graph analytics workloads – Push-Pull direction

switching [27, 32, 154]. First, in contrast to Push-Pull, RADAR eliminates a majority of the atomic updates

without impacting the work-efficiency of graph applications. Second, RADAR incurs only half the memory

footprint of Push-Pull optimization, allowing RADAR to support larger input graphs with the same memory

budget. We end this section by comparing the preprocessing overheads incurred by RADAR relative to the

Push-Pull optimization.

3.4.1 RADAR’s Work-efficiency Benefits over Push-Pull

Figure 3.7 shows the speedups from RADAR and Push-Pull relative to a baseline, push-based execution.

The results show speedups both including the preprocessing overheads (solid bars) and without including

the cost of preprocessing (total bar height). In this section, we explain the performance of Push-Pull and

RADAR without considering preprocessing overheads (i.e., here we focus on the total bar height) and defer

the discussion on performance with preprocessing costs to Section 3.4.3. The relative benefit of RADAR

over Push-Pull is application-dependent and we report our findings for each application below.

PageRank: PageRank updates every vertex each iteration (i.e. frontier includes all the vertices). There-

fore, every iteration uses the pull phase (Algorithm 2) to eliminate atomic updates. The results show that

executing PR using the pull phase improves performance by eliminating atomic updates. However, RADAR

outperforms the pull-phase execution because RADAR couples eliminating atomic updates for hub vertices

with improved locality. The only exception is the WEB graph which receives significantly higher speedup
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Figure 3.7: Speedups from Push-Pull and RADAR: The total bar height represents speedup without
accounting for the preprocessing costs of Push-Pull and RADAR. The filled, lower bar segment shows the net
speedup after accounting for the preprocessing overhead of each optimization. The upper, hashed part of the
bar represents the speedup loss as a result of accounting the preprocessing overhead of each optimization.

from Push-Pull because the creators of the graph use a sophisticated algorithm [34], that optimizes pull phase

execution, to pre-order the graph at great computational cost [13].

PageRank-delta: PageRank-delta uses the Push-Pull optimization to process the graph in the pull

phase during dense frontiers (i.e. frontier contains most of the vertices in the graph) and in the push phase

otherwise. A pull phase execution eliminates all atomic updates at the expense of reducing work-efficiency.

Additionally, a pull phase execution also converts the regular accesses to the Frontier in the push phase (line

1 in Algorithm 1) into irregular accesses (line 3 in Algorithm 2). For many graphs, the performance loss from

irregular Frontier accesses offsets the benefits from eliminating atomic updates and a Push-Pull execution

causes slowdowns. In contrast, RADAR provides better performance by eliminating a large fraction of atomic

updates while maintaining regular accesses to the Frontier. As before, the WEB graph is an exception,

where the pull-optimized layout of the graph ensures good locality for Frontier accesses. Consequently,

Push-Pull eliminates atomic updates without incurring a penalty for Frontier accesses, leading to significant

performance improvement for the WEB graph.

We explored the trade-off of a pull phase execution, which is to eliminate atomic updates at the expense

of making Frontier accesses irregular, by running PR-Delta on the same graphs but with two different vertex

orders – random ordering and a pull phase optimized ordering called frequency based clustering [176].

Figure 3.8 shows the speedups from Push-Pull and RADAR on graphs with the two different orderings.

Results for the randomly-ordered graphs show that Push-Pull consistently causes slowdowns because the
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Figure 3.8: Speedups for PR-Delta from Push-Pull and RADAR on graphs with different orderings:
Push-Pull causes consistent slowdowns when running on randomly ordered graphs.

random ordering makes Frontier accesses highly irregular, thereby offsetting any performance benefits from

eliminating atomics. Note that Push-Pull causes slowdown even in the WEB graph when it is randomly

ordered. Push-pull performs better for the graphs ordered with the pull-phase optimized frequency based

clustering algorithm. In contrast to Push-Pull, RADAR improves performance regardless of the original

vertex order of the graph and, hence, is more generally applicable.

Local Triangle Counting: Local Triangle Counting operates on undirected ("symmetrized") versions

of input graphs and performs the same accesses in both push and pull phases. For applications like Local

Triangle Counting that operate on undirected graphs, RADAR is the only option for improving performance

by eliminating atomic instructions.

Algorithm 4 Pseudocode for push-phase of BC

1: par_for src in Frontier do
2: for dst in out_neigh(src) do
3: if Visited[dst] is True then
4: AtomicUpd (vtxData[dst]), auxData[src])

Betweenness-Centrality: Just like PageRank-delta, BC uses the Push-Pull optimization by processing

dense frontiers using the pull phase and otherwise using the push phase. However, the per-edge computation

performed in BC (shown in Algorithm 4) is different from PR-Delta. BC performs an additional check on

a Visited data structure (line 3) before performing its per-edge computation. For each edge, BC accesses

two data structures, each indexed by the source and destination IDs of the edge. Regardless of whether

an iteration is processed using the push phase or the pull phase, BC performs irregular accesses to one of

the data structures (Visited during the push phase and Frontier during the pull phase). Therefore, unlike
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PR-Delta, a pull-phase iteration in BC eliminates atomic updates without introducing irregular accesses. As a

result, Push-Pull often outperforms RADAR for BC.

BFS: The Push-Pull direction-switching optimization was originally designed for BFS [27, 154]. In BFS,

processing a dense frontier in the pull-phase allows breaking out of the iteration sooner than a push-phase

execution. Therefore, Push-Pull significantly outperforms RADAR by achieving an algorithmic reduction in

the total number of edges required to be processed.

Radii: Radii has an access pattern similar to PageRank-Delta. However, unlike PageRank-Delta, Radii is

not bottlenecked by atomic updates thanks to T&T&S. With little potential for performance improvement

from eliminating atomic updates (Figure 3.1), Push-Pull provides low speedup for Radii.

3.4.2 Reduced Memory Footprint with RADAR

The Push-Pull optimization doubles an application’s memory footprint. Push-Pull implementations switch

between executing a graph using push and pull phases based on frontier density and, hence, require two

CSRs - one for outgoing neighbors (used during the push phase) and another for incoming neighbors (used

during the pull phase). The higher memory footprint of Push-Pull cuts in half the maximum graph size that

can be processed using a single machine.
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Figure 3.9: Speedups from RADAR for the SDH graph: RADAR provides speedups while the size of SDH
graph precludes applying the Push-Pull optimization.

To illustrate the limitations imposed by the higher memory footprint of Push-Pull, we ran experiments on

the subdomain host [126] (SDH) graph which is even larger than the SD1 graph. The size of the SDH graph

causes an Out of Memory (OOM) error in our 64GB server when storing both the in- and out- CSRs of the

graph, making it impossible to apply the Push-Pull optimization for the graph. In contrast, our server fits just

the out-CSR of the graph, accommodating the baseline and RADAR versions of applications. Figure 3.9

shows the performance of RADAR on the SDH graph across different applications. We were unable to
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run any configuration for BC since even the baseline execution of BC requires both the in- and out-CSRs.

The result shows that RADAR provides significant performance improvements for the SDH graph, while

Push-Pull runs out of memory. By maintaining the same memory footprint as the baseline, RADAR provides

performance improvements for larger graphs than Push-Pull, making RADAR a more effective optimization

for graph processing in a single, memory-limited machine.

3.4.3 Preprocessing Overheads

All the optimizations covered in the paper – HUBDUP, Degree Sorting, RADAR, and Push-Pull– require

some form of preprocessing on the input graph. The input graph used in Ligra is an adjacency file that stores

outgoing edges of the graph in the CSR format. The preprocessing step for Push-Pull builds an in-CSR (CSR

for incoming edges) by traversing the input graph to first collect all the incoming edges of the graph and then

sorting all the incoming edges by destination IDs. For HUBDUP, the preprocessing step involves populating

the hMask bitvector for identifying hubs and creating maps between hub vertex IDs and unique locations

in thread-local copies of hub data. For RADAR and Degree Sorting, the input graph needs to reordered

in decreasing order of degrees. Reordering the graph requires sorting the in-degrees of vertices to create a

mapping from original vertex IDs to new IDs (ordered by decreasing in-degrees) followed by populating

a new out-CSR with vertices in the new order. Table 3.4 lists the preprocessing algorithm complexity and

runtime for the different optimizations on all input graphs. HUBDUP has the lowest complexity because

it only scans the degrees of all vertices. Push-Pull incurs the maximum complexity because it sorts all the

edges to build an in-CSR. Push-Pull, however, incurs zero preprocessing cost for undirected graphs because

these graphs have the same incoming and outgoing edges. Finally, RADAR imposes lower preprocessing

overhead than Push-Pull for directed graphs.

Complexity DBP GPL PLD TWIT MPI KRON WEB SD1
HUBDUP O(V ) 0.06s 0.11s 0.14s 0.24s 0.22s 0.23s 0.19s 0.37s
DegSort/RADAR O(V logV +E) 0.88s 2.37s 2.29s 8.26s 19.06s 2.94s 3.49s 7.42s
Push-Pull O(ElogE) 2.96s 7.03s 3.91s 9.68s 47.71s 0s 10.86s 12.51s

Table 3.4: Preprocessing costs for HUBDUP, RADAR, and Push-Pull: Degree Sorting and RADAR have
a smaller preprocessing cost compared to Push-Pull. (V - #vertices and E - #edges)

Figure 3.7 shows the speedups from Push-Pull and RADAR after accounting for the above preprocessing

costs (filled, lower bar segments). Preprocessing overheads are easily justified for long-running applications

such as PageRank and Local Triangle Counting where RADAR provides a net speedup even after including
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the preprocessing costs. Preprocessing imposes significant overheads for PR-Delta and Radii. However, these

applications are refinement-based algorithms where preprocessing can be justified when more refined results

are desired (for example, lower convergence threshold in PR-Delta, traversals from more sources in Radii

and BC). Finally, preprocessing overheads can be justified for BFS in scenarios where multiple traversals on

the same graph are performed.

3.5 Related Work

We divide the prior work in graph processing related to RADAR into three categories – data duplication,

reducing cost of atomic updates, and locality optimizations.

Data duplication in graph applications: Prior work in distributed graph processing has proposed data

duplication for hub vertices in power-law graphs [72, 143]. Vertex delegates [143] replicates hub vertex data

across all nodes in a cluster and uses asynchronous broadcasts and reductions to reduce total communication

for updating hub data. Powergraph [72] creates replicas of hub vertices to create balanced vertex cuts

(assigning equivalent number of edges to each node). As discussed in Section 3.1.2, the duplication strategies

used in the above systems are not directly applicable in the shared memory setting due to differences in the

primary bottlenecks of the two scenarios. Data duplication has also been used for reducing the cost of atomic

updates in GPU-based graph processing [120]. Similar to RADAR, Garaph highlights the importance of

restricting duplication overheads to avoid an increase in DRAM accesses. However, RADAR and Garaph use

different techniques to reduce duplication overhead. RADAR creates a per-thread copy only for hub vertices

whereas Garaph duplicates all vertices but creates fewer copies than number of threads. The duplication

strategy of Garaph is tied to the out-of-core [105] execution model that targets graphs that cannot fit in

memory and, hence, is orthogonal to RADAR (which targets in-memory graph processing).

Reducing cost of atomic updates: Prior work has proposed techniques to reduce the cost of atomic updates

in graph processing. AAM [31] is a system that uses Hardware Transactional Memory (HTM) to reduce the

cost of atomic updates. AAM amortizes the cost of providing atomicity by applying updates for multiple

vertices within a single transaction instead of atomically updating each vertex. However, the authors report

that AAM is only effective for applications that employ the T&T&S optimization (particularly BFS) and

leads to many transaction aborts for applications that cannot employ T&T&S. Therefore, AAM and RADAR

are complimentary optimizations because RADAR provides the best performance for applications that cannot
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employ T&T&S. Galois [145] uses speculative parallelism to avoid fine grained synchronization and improve

locality in irregular applications. RADAR also aims to avoid fine grain synchronization and improve locality,

but uses data duplication to achieve the goal. Finally, Besta et. al. [32] proposed the "Partition Awareness

(PA)" optimization for reducing atomic updates in push-based graph applications. The PA optimization

creates two CSRs – one identifying neighbors local to a core and another identifying neighbors belonging to

remote cores – allowing threads to update local neighbors without atomic instructions. However, PA requires

static partitioning of vertices to thread and precludes dynamic load balancing (which is critical for power-law

graphs).

Locality optimizations for graph processing: Extensive research in graph reordering has produced re-

ordering techniques with varying levels of sophistication to improve graph locality [13, 34, 92, 164, 176].

While RADAR could potentially be applied with different reordering techniques, efficient duplication of

hub vertices requires that the reordering mechanism produce a graph where the hub vertices are assigned

consecutive IDs (Section 3.2.1). We chose Degree Sorting in our study because of its low overhead and the

advantage of assigning hub vertices consecutive IDs at the start of the vertex array. Studying combinations of

RADAR with different reordering techniques is an interesting line of research and we leave this exploration

for future work.

Vertex scheduling is an alternative to graph reordering that improves locality by changing the order of

processing vertices. Prior work [125,176] has shown that traversing the edges of a graph along a Hilbert curve

can improve locality of graph applications. However, these techniques complicate parallelization [28, 176].

Vertex scheduling only targets an improvement in locality and, unlike graph reordering, does not help in

improving the efficiency of data duplication for power-law graphs.

Cache blocking is another technique used to improve locality of graph applications. Zhang et. al. [176]

proposed CSR segmenting – a technique to improve temporal locality of vertex data accesses by breaking the

original graph into subgraphs that fit within the Last Level Cache. Propagation blocking [28, 37] partition

updates to vertex data instead of partitioning the graph. RADAR differs from these prior works in that

RADAR targets not just locality improvement but also a reduction in atomic updates.

Graph partitioning techniques, traditionally used for reducing communication in distributed graph

processing, have recently been applied to improve locality of in-memory graph processing frameworks [158,

159, 175]. Sun et. al. [158] proposed a partitioning approach where all the incoming edges of a vertex

are placed in the same partition to improve temporal locality of memory accesses. The authors propose
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modifications to the graph data structure and computation to handle a large number of partitions and

demonstrate significant locality improvements along with eliminating atomic updates. RADAR aims to

achieve the same goals as this prior work, but without requiring changes to the graph data structure, increasing

the memory footprint, or reducing work-efficiency.
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Figure 3.10: Improved scalability with RADAR: RADAR eliminates expensive atomic updates and im-
proves cache locality without affecting the graph application’s work-efficiency.

3.6 Discussion

RADAR combines data duplication and graph reordering to improve scalability and locality of graph analytics

workloads (Figures 3.5 and 3.7). To better understand the scalability improvements offered by RADAR, we

compared the effect of different optimizations on the runtimes of the PageRank-Delta (PR-Delta) application

as the number of threads is varied. Figure 3.10a compares RADAR’s scalability with the Push-Pull direction

switching optimization. While Push-Pull is effective at eliminating atomic updates it does so at expense of

work-efficiency. In contrast, RADAR avoids atomic updates without impacting work-efficiency of the graph

application, allowing RADAR to scale better than Push-Pull. Figure 3.10b compares RADAR’s scalability

with other push-phase optimizations. By combining HUBDUP and Degree Sorting, RADAR eliminates the
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bottlenecks of each optimization (cost of finding hub vertices in HUBDUP and increased false sharing with

Degree Sorting). In conclusion, this chapter shows that RADAR is an effective optimization for parallel

graph analytics on power-law input graphs.



Chapter 4

Practical Optimal Cache Replacement for

Graph Analytics

So far we have looked at software-based optimizations that improve cache locality of graph analytics by

making an assumption about the input (i.e. that graphs often have a power-law degree distribution). However,

it is desirable to have a cache locality optimization that can generalize beyond power-law input graphs.

In this chapter, we present a hardware-based cache locality optimization that is agnostic to the sparsity

pattern of the input graph [16]. We show that the common graph representation (CSR and CSC) allows

an architecture to perform optimal cache replacement for graph analytics workloads. Specifically, the key

insight of our work is that the transpose of a graph succinctly represents the next references of all vertices

at all points during a graph application execution; enabling an efficient emulation of the Belady’s MIN

replacement policy [30] (an idealized cache replacement policy that uses future access information for optimal

replacement). Our main contribution is P-OPT, an architecture solution that uses a specialized compressed

representation of a transpose’s next reference information to enable a practical implementation of Belady’s

MIN replacement policy. P-OPT uses information about future accesses to guide cache replacement decisions

which allows P-OPT to provide significantly higher locality improvements compared to heuristics-based

state-of-the-art cache replacement policies [84, 86, 167]. Finally, we show that because P-OPT does not make

any assumptions about the sparsity pattern of the input graphs, P-OPT is able to provide more consistent

locality improvements compared to prior graph locality optimizations [60, 128].

61
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4.1 Limitations of Existing Cache Replacement Policies

Prior work produced high-performance replacement policies [84, 86, 97, 167] applicable to a range of

workloads, but the characteristics of graph processing render state-of-the-art policies ineffective. We

implement three state-of-the-art policies, comparing their cache miss rates for graph workloads against

a baseline Least Recently Used (LRU) policy. DRRIP [86] offers scan-resistance and thrash-resistance.

SHiP [167] uses signatures to predict re-references to application data. We implement two SHiP variants [167]

– SHiP-PC and SHiP-Mem – that track replacement by PC and memory address respectively. We also compare

to Hawkeye [84], the winning policy in the 2019 cache replacement championship [6]. Hawkeye retroactively

applies Belady’s MIN replacement policy to a history of accesses to predict future re-references based on

whether past accesses would have hit in cache.

LRU DRRIP SHIP-PC SHIP-MEM-INF HAWKEYE
Policies

0
10
20
30
40
50

LL
C 

M
PK

I

App - PageRank

Figure 4.1: LLC Misses-Per-Kilo-Instructions (MPKI) across state-of-the-art policies: State-of-the-art
policies do not reduce MPKI significantly compared to LRU for graph analytics workloads.

Figure 4.1 shows Last Level Cache (LLC) miss statistics for different policies for the Pagerank applica-

tion on a set of large graphs (Section 4.5.1 details our setup). The data show that state-of-the art policies

do not substantially reduce misses compared to LRU. We observed that all policies have LLC miss rates in

the range of 60% to 70%. The state-of-the-art policies fare poorly because graph processing applications

do not meet their assumptions. Simple policies (LRU and DRRIP) do not learn graph-structure-dependent

irregular access patterns. SHiP-PC and Hawkeye use the PC to predict re-reference, assuming all accesses by

an instruction have the same reuse properties. As the pull Algorithm 2 illustrates, graph applications violate

this assumption because the same srcData access (line 3) will have different locality for high-connectivity

vertices compared to the low-connectivity vertices. SHiP-Mem predicts re-reference using memory addresses,

assuming that all accesses to a range of addresses will have the same reuse properties. Even with infinite

storage to track individual cache lines, our idealized SHiP-Mem implementation provides little improvement
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over LRU, highlighting that graph workloads do not have static reuse properties. This data shows the

ineffectiveness of state-of-the-art DRRIP, SHiP, and Hawkeye policies for graph processing, corroborating

findings from prior work [60]. Therefore, we develop a graph-specific replacement policy to eliminate costly

DRAM accesses and improve the performance of graph applications.

4.2 Transpose-Directed Belady’s Optimal Cache replacement

State-of-the-art replacement policies perform poorly for graph applications because they do not capture

dynamically varied, graph-structure-dependent reuse patterns. Belady’s MIN replacement policy (which we

call OPT) evicts the line accessed furthest in future. However, OPT is impractical because it requires oracular

knowledge of future memory accesses. Our main insight is that for graph applications, the graph’s transpose

stores sufficient information to practically emulate OPT behavior.
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Figure 4.2: Graph Traversal Patterns and Representations

4.2.1 Transpose Encodes Future Reference Information

We first discuss a simple OPT implementation that (impractically) requires future knowledge, applied to the

pull-based graph kernel in Algorithm 2. As shown in Figure 4.3 (left), a pull-based traversal sequentially

visits each destination vertex’s incoming source neighbors (encoded in the CSC). The pull execution generates

streaming accesses to the CSC (Offsets and Neighbors Arrays) and dstData, while memory accesses to

srcData depend on the contents of Neighbors Array (NA in Figure 4.2). To make replacement decisions, this

OPT implementation must scan the contents of NA to find the destination vertex for which the pull execution

will next reference a particular source vertex element in srcData 1. In the example (Figure 4.3; left), after

1By virtue of visiting each element only once, streaming data (like dstData) have a fixed re-reference distance of infinity.
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the first access to srcData[S1] while processing the incoming neighbors of vertex D0, OPT sequentially

scans the NA to find that processing vertex D4 will re-reference srcData[S1]. In the worst case, the entire

NA may be scanned to find the next reference (if any) of a srcData array element, resulting in an extreme

computational complexity of O(|Edges|) for each replacement event.
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Figure 4.3: Using a graph’s transpose to emulate OPT: For the sake of simplicity, we assume that only
irregular accesses (srcData for a pull execution) enter the 2-way cache. In a pull execution using CSC, fast
access to outgoing-neighbors (i.e. rows of adjacency matrix) encoded in the transpose (CSR) enables efficient
emulation of OPT.

Our main insight is that a graph’s transpose encodes the future re-reference information for each vertex

allowing similar replacement as the OPT policy while incurring significantly lower computational complexity.

Our insight is based on two observations about pull execution. First, a pull execution sequentially visits

each vertex and processes all of its incoming neighbors (i.e., processing incoming neighbors of D0 before

moving on to incoming neighbors of D1). Second, a pull execution processes the CSC for fast access to

incoming neighbors (adjacency matrix columns) and the transpose of the graph (a CSR) allows quick access

to outgoing neighbors (i.e. adjacency matrix rows). A cache can easily determine the next reference to

srcData[S1] when it is first accessed as an incoming neighbor of vertex D0. By accessing the CSR, we can

quickly learn that vertex S1 has two outgoing neighbors – vertex D0 and D4 – and, hence, srcData[S1] will

only be accessed next while processing the incoming neighbors of vertex D4. With the help of the transpose

in the efficiently traversable CSR format, the complexity of finding the next future reference of a srcData

element is reduced to O(|OutDegree|), i.e., scanning the outgoing neighbors of a vertex2. While this example

describes a pull execution model, conversely, a push execution model using a CSR can also use its transpose

(CSC) for estimation of next references to irregular dstData accesses.

2Real-world graphs typically have an average degree of 4-32 which is orders of magnitude lower than the number of graph
edges (order of 100M-1B).
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4.2.2 Locality Improvements with Transpose-based Optimal Replacement

We show how knowledge of next reference information estimated using a graph’s transpose is used to emulate

OPT. Figure 4.3 (center panel) shows a 2-way set-associative cache in which each cache way can store only a

single element of srcData. In replacement scenario A , the cache has just incurred the cold misses for

srcData[S1] and srcData[S2] and now needs to insert srcData[S4]. The cache must decide: will the

execution access srcData[S1] or srcData[S2] further in the future? By scanning the outgoing neighbors

of vertex S1 (i.e. S1’s row in the adjacency matrix), we can determine that S1 will be accessed next when

processing the neighbors of vertex D4. Similarly, the transpose informs us that S2 will be accessed next

when processing incoming neighbors of vertex D1. Therefore, to emulate OPT we must evict srcData[S1]

because its next reuse is further into the future than srcData[S2]. Replacement scenario B (Figure 4.3;

right panel) considers the execution two accesses later when the pull execution is processing the incoming

neighbors of vertex D1 and needs to cache srcData[S3]. The transpose informs that the next re-reference of

vertex S2 is further into the future and OPT evicts srcData[S2].
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Figure 4.4: Transpose-based Optimal replacement (T-OPT) reduces misses by 1.67x on average com-
pared to LRU.

We studied the effectiveness of the transpose-based OPT (which we refer to as “T-OPT”) on graph

applications by measuring the reduction LLC misses compared to the replacement policies introduced

previously. Figure 4.4 shows that T-OPT reduces LLC MPKI for the Pagerank workload. T-OPT significantly

reduces LLC MPKI compared to LRU and other policies, achieving a 41% miss rate for Pagerank (compared

to a 60-70% miss rate for other policies). The main reason for the improvement is that, unlike other

replacement policies, T-OPT does not use a heuristic to guess the re-reference pattern. Instead, T-OPT uses

precise information of future reuse encoded in the graph’s transpose to make better replacement decisions.
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4.2.3 Limitations of Transpose-based Optimal Replacement

The benefits of T-OPT shown in Figure 4.4 are idealized, ignoring the costs of accessing transpose data

to make replacement decisions. A key challenge posed by T-OPT is that naively accessing the transpose

imposes an untenable run time overhead and cache footprint.

Increased Run Time: Finding the next reference of a vertex incurs a complexity of O(|d|) where |d| is

the out-degree of the vertex. The cost of finding the next reference compounds when the granularity of graph

data allows multiple vertices to fit in a cache line. Therefore, finding the next reference of a line involves

finding the next reference of each vertex in the line (and reporting the minimum of these values).

Increased Memory Accesses: Computing the next reference of each line requires accessing the transpose

of cache-resident vertices involved in replacement. Since the vertices resident in cache can be arbitrary, the

neighbor lookups using the Offset Array (OA) and Neighbor Array (NA) of the transpose (Figure 4.2) incur

additional irregular memory accesses that increase cache contention with graph application data.

4.3 P-OPT: Practical Optimal Cache Replacement

The main contribution of this work is P-OPT, a transpose-based cache replacement policy and architecture

implementation that brings virtually all of the benefits of transpose-based OPT (T-OPT) without its overheads.

P-OPT uses a specialized data structure (called the Rereference Matrix) for fast access of re-reference

information available in a graph’s transpose without incurring T-OPT’s overheads.

4.3.1 Reducing the Overheads of T-OPT

Quantizing Re-reference Information: P-OPT reduces the cost of making a replacement decision by

quantizing the graph’s transpose. By virtue of using the transpose, the range of next references for a vertex in

T-OPT spans the entire vertex ID space (typically a 32-bit value). We observe that using only a few (e.g. 8)

significant bits of the vertex ID space is sufficient to approximate T-OPT. By quantizing next references into

fewer, uniform-sized epochs, P-OPT reduces the size of next reference information. Figure 4.5 (left panel)

shows how the next references in our example pull execution have been quantized to three epochs (with each

epoch spanning two vertices). Quantization reduces the range of next references for each vertex (spanning

Epoch-0 to 2), unlike T-OPT where the next reference spans the entire range of vertices in the graph (D0 to

D4).
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Figure 4.5: Reducing T-OPT overheads using the Rereference Matrix: Quantizing next references into
cachelines and a small number of epochs reduces the cost of accessing next references.

Rereference Matrix: A Rereference Matrix is a quantized encoding of a graph’s transpose with dimen-

sions {numCacheLines x numEpochs}. numCacheLines is the number of lines spanned by the irregularly

accessed graph data (i.e. srcData for the pull execution in Algorithm 2). numEpochs is determined by the

number of bits required to store quantized next references. Figure 4.5 shows the Rereference Matrix for the

running example. The number of cache lines in the Rereference Matrix is equal to the number of vertices as a

cache line stores a single srcData element in Figure 4.3. Each Rereference Matrix entry stores the distance

to the epoch of a cache line’s next reuse, which is the difference between the epoch of its next reuse and

the current epoch. For example, at Epoch 0, the srcData[S0] cache line (C0) will be accessed in the next

epoch; its entry is 1. At epoch 1, srcData[S0] is accessed so the C0 entry is 0, indicating an access in the

current epoch. At epoch 2, srcData[S0] has no future re-reference and C0’s entry is set to a sentinel value

(e.g. maximum value (M) indicating next reference at infinity).

Using the Rereference Matrix, P-OPT approximates T-OPT while avoiding T-OPT’s overheads in two key

ways. First, P-OPT stores a next reference per cache line, not per vertex. Instead of traversing the neighbors

of each vertex in a cache line (as in T-OPT), P-OPT need only look up a single next reference for the cache

line in O(1). Second, P-OPT reduces cache contention because only a single epoch (i.e. column) of the

Rereference Matrix needs to be resident in the cache at a time. When the execution transitions to a new

epoch, P-OPT caches the next epoch of the Rereference Matrix, which contains updated next references for

all lines. For a graph of 32 million vertices, 64B cache lines, and 4B per srcData element, 8-bit quantization

yields a Rereference Matrix column size of 2MB (2M lines * 1B), consuming only a small part of a typical

server CPU’s LLC.
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4.3.2 Tolerating Quantization Loss

Quantizing next references in the Rereference Matrix is lossy. Figure 4.5 shows that the Rereference Matrix

encodes the distance to the epoch of a cache line’s next reference. Only inter-epoch reference information is

tracked and an execution cannot identify a cache line’s final reference within an epoch, which can lead to

incorrect replacement decisions. After a cache line’s final access in an epoch, the zero entry in the Rereference

Matrix indicates that the cache line will still be accessed in that epoch, but it will not be. To be more accurate,

the next reuse of the cache line should be updated after the final access in an epoch.

1b 7b

Rereference	Matrix	Entry

MSB
MSB	==	0

MSB	==	1

Cacheline	Referred	in	this	epoch
(7	bits	encode	last	Reference	within	Epoch)

No	reference	this	epoch
(7	bits	encode	distance	to	next	Epoch)

Inter/Intra	Epoch	Info

Figure 4.6: Modified Rereference Matrix design to avoid quantization loss: Tracking intra-epoch infor-
mation allows P-OPT to better approximate T-OPT.

P-OPT uses a modified Rereference Matrix entry structure that encodes inter-epoch and intra-epoch

information. Figure 4.6 shows a Rereference Matrix entry with 8-bit quantization. Each Rereference Matrix

entry’s most significant bit records whether the cache line will be accessed in the epoch. If the cache line is

not accessed in the epoch, the MSB is set to one and the remaining lower bits encode the distance (in epochs)

to the cache line’s next reference. If the cache line is accessed within the epoch, the MSB is set to zero and

the remaining lower bits encode when the final access to the cache line will happen in the epoch. To encode

final access, P-OPT divides the vertices spanned in a epoch into equal-sized partitions called “sub-epochs”.

The number of sub-epochs in an epoch is equal to the maximum value representable with the remaining

lower bits of a Rereference Matrix entry (127 in this example). When the MSB value is zero, the Rereference

Matrix entry encodes a cache line’s final access sub-epoch, referring to the partition of vertices within the

epoch during which a cache line’s final access occurs.

Pre-computing P-OPT’s modified Rereference Matrix is a low-cost preprocessing step that runs before

execution (Section 4.5.5). During an execution, the modified Rereference Matrix requires some additional

computation to find a cache line’s next reference. Algorithm 5 shows the computation to find next references

with 8-bit quantization. To find the next reference of cache line (clineID) in Epoch epochID (which is

defined by currDstID for pull executions), P-OPT checks the MSB of the cache line’s Rereference Matrix

entry for the current epoch (currEntry) (Line 5). If the MSB of currEntry is set, then the cache line will
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Algorithm 5 Finding the next reference via Rereference Matrix

1: procedure FINDNEXTREF(clineID,currDstID)
2: epochID← currDstID/epochSize
3: currEntry← RerefMatrix[clineID][epochID]
4: nextEntry← RerefMatrix[clineID][epochID+1]
5: if currEntry[7] == 1 then
6: return currEntry[6 : 0]
7: else
8: lastSubEpoch← currEntry[6 : 0]
9: epochStart← epochID∗epochSize

10: epochOffset← currDstID−epochStart
11: currSubEpoch← epochOffset/subEpochSize
12: if currSubEpoch≤ lastSubEpoch then
13: return 0
14: else
15: if nextEntry[7] == 1 then
16: return 1 + nextEntry[6 : 0]
17: else
18: return 1

not be accessed in the current epoch and the lower 7 bits of currEntry encode the epoch of the cache line’s

next reference (Line 6). However, if the MSB is unset, then the cache line is accessed in the current epoch.

The lower 7-bits of currEntry track the final sub-epoch during which the execution accesses the cache line.

Using the vertex ID currently being processed (currDstID in a pull execution), the computation checks if

the execution is beyond the final reference to the cache line in the epoch (Lines 8-12). If execution is yet

to reach the sub-epoch of the final reference to the cache line, the computation returns with a rereference

distance of 0 (i.e., the cache line will be re-used during the current epoch). However, if execution has passed

the sub-epoch of the last reference to the cache line, then the Rereference Matrix entry of the cache line for

the next epoch (nextEntry) encodes the epoch of the cache line’s next reference (Line 4). If the MSB of

nextEntry is unset, then the cache line is accessed in the next epoch (Line 18) (i.e., a rereference distance

of 1). If the MSB of nextEntry is set, then nextEntry’s low order bits encode the distance to the epoch of

the cache line’s next reference (Line 16).

The new Rereference Matrix has two key distinctions. First, finding a cache line’s next reference may

require accessing the current and next epoch information. This double lookup requires fast access to two

columns of the Rereference Matrix at each point in time. Second, P-OPT hijacks the MSB of an entry to

distinguish between inter-epoch (distance to next epoch) and intra-epoch (final access sub-epoch) tracking

which the comes at the cost of halving the range of next reference epochs tracked.
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Figure 4.7: Tracking inter- and intra-epoch information in the Rereference Matrix allows P-OPT to
better approximate T-OPT: The P-OPT designs reserve a portion of the LLC to store Rereference Matrix
column(s) whereas T-OPT is an ideal design that incurs no overhead for tracking next references.

We implemented two versions of P-OPT using the different Rereference Matrix designs in our cache

simulator and compared their effectiveness to DRRIP and T-OPT. The P-OPT version that uses the first

Rereference Matrix design is P-OPT-INTER-ONLY (Figure 4.5). The P-OPT version that uses the modified

Rereference Matrix design (Figure 4.6) to track both intra- and inter-epoch reuse information is P-OPT-

INTER+INTRA. Figure 4.7 shows the reduction in LLC misses on Pagerank achieved by the different

policies relative to DRRIP. Both the P-OPT versions achieve miss reduction over DRRIP highlighting that

reserving a small portion of the LLC to drive better replacement is a worthwhile trade-off. Furthermore,

P-OPT-INTER+INTRA is able to achieve LLC miss reduction close to the idealized T-OPT that incurs zero

overheads to access the graph transpose. We adopt P-OPT-INTER+INTRA as the default P-OPT design for

the rest of the paper, due its effectiveness as a close approximation of T-OPT.

4.4 P-OPT Architecture

P-OPT is an architecture that uses Rereference Matrix data stored within a small portion of the LLC to

perform better cache replacement. This section first presents a simplified single-core, Uniform Cache Access

(UCA) architecture implementation of P-OPT, supporting a single, irregularly-accessed data structure. Later,

we show how P-OPT fits in a multi-core, NUCA architecture and supports multiple irregular access streams.

4.4.1 Storing Next References in LLC

P-OPT stores the current and next epoch columns of the Rereference Matrix within the LLC to ensure fast

access of next reference information during cache replacement. P-OPT needs fast access to the current and
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next epoch columns of the Rereference Matrix. P-OPT stores these Rereference Matrix columns within the

LLC so to access next references without adding irregular DRAM accesses. P-OPT uses way-based cache

partitioning [7] to reserve the minimum number of LLC ways that are sufficient to store the current and next

epoch columns of the Rereference Matrix. Using the default 8-bit quantization, enough ways need to be

reserved as to be able to store 2∗numLines∗1B where numLines is the number of cache lines spanned by the

irregularly-accessed data (numLines = numVertices
elemsPerLine ). Figure 4.8 shows some LLC ways reserved for current

(orange) and next (blue) epoch columns of the Rereference Matrix. P-OPT organizes the Rereference Matrix

columns in LLC for easy access of next reference data. Within a reserved way, consecutive cache-line-sized

blocks of a Rereference Matrix column are assigned to consecutive sets. After filling all the sets in one way,

P-OPT fills consecutive sets of the next reserved way. P-OPT stores cache lines of the next epoch column

of the Rereference Matrix right after the current epoch column (Figure 4.8). Therefore, P-OPT maintains

two hardware registers for each epoch – way-base and set-base – to track the starting positions of the two

Rereference Matrix columns within reserved ways of the LLC.
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Figure 4.8: Organization of Rereference Matrix columns in the LLC: P-OPT pins Rereference Matrix
columns in the LLC.

The Rereference Matrix data organization within the LLC allows P-OPT to easily map irregularly

accessed data (henceforth referred to as irregData) to their corresponding Rereference Matrix entries. The

irregData array spans multiple cache lines consecutively numbered with an ID from 0 to numLines−1.

P-OPT uses the irregData cache line ID to find the unique location of the Rereference Matrix entry within

the LLC. With P-OPT’s default 8-bit quantization, a typical cache line of 64B contains 64 entries of a

Rereference Matrix column. The low 6 bits (log2(64)) of the cache line ID provides an offset within a cache

line of Rereference Matrix data. The next log2(numSets) bits of the cache line ID provides a set offset and

the remaining cache line ID bits provide a way offset. The final set and way location of a Rereference Matrix

entry for an irregData cache line is determined by adding the set and way offsets to the set-base and
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way-base registers of the required epoch 3.

4.4.2 Identifying Irregular Data

P-OPT needs to access the Rereference Matrix data only for irregData lines (since all other accesses are

streaming in Algorithm 2). P-OPT maintains two registers – irreg_base and irreg_bound – to track the

address range of a graph kernel’s irregData (Figure 4.9). During cache replacement, P-OPT compares the

address in the tag portion of each way in the eviction set against irreg_base and irreg_bound registers to

determine if the way contains an irregData cache line. The irreg_base and irreg_bound registers must

track physical addresses as P-OPT reasonably assumes that LLC is a Physically-Indexed Physically-Tagged

(PIPT) cache. P-OPT sidesteps the complexity of address translation by requiring that the entire irregData

array fits in a single 1GB Huge Page [142]. By ensuring that all irregData elements map to a single (huge)

page, P-OPT guarantees that the range of physical addresses associated with irregData array lie strictly

within the range of physical addresses represented by irreg_base and irreg_bound. Software configures

the two registers once at the start of execution using memory-mapped registers. Allocating irregData using

a 1GB Huge Page uses widely-available system support [142] and allows processing sufficiently large graphs

with up to 256 million vertices (assuming 4B per irregData element). To support larger graphs, P-OPT

could incorporate prior proposals [81, 130] that provide system support to ensure identity mapping between

physical and virtual addresses for important data structures (such as irregData).

4.4.3 Finding a Replacement Candidate

P-OPT maintains a small number of buffers (called next-ref buffers) at the LLC to keep track of the

next references of each way in the eviction set (Figure 4.9). A next-ref buffer tracks an 8-bit next

reference entry for each (non-reserved) way in the LLC. At the start of a cache replacement, P-OPT assigns

a free next-ref buffer to the eviction set. To find a replacement candidate, P-OPT uses a Finite State

Machine (called the next-ref engine) to compute the next reference of each non-reserved way in the

eviction set and the next-ref engine stores next references in the corresponding entry of the next-ref

buffer. The next-ref engine skips computing next references for the ways reserved for Rereference

Matrix columns because P-OPT never evicts Rereference Matrix data. Among non-reserved ways, the

3For non power-of-two number of sets: WayOffset= (cachelineID>>6)
numSets and SetOffset = (cachelineID >> 6) % numSets.
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next-ref engine uses the irreg_base and irreg_bound registers to first search for a way that does

not contain irregData (i.e. contains streaming data). The next-ref engine reports the first way in

the eviction set containing streaming data as the replacement candidate. If all ways in the eviction set

contain irregData, then the next-ref engine runs P-OPT’s next reference computation (Algorithm 5)

for each way. The next reference computation of an irregData cache line requires the cache line ID of the

irregData and the vertex ID currently being processed in the outer loop of a graph application (e.g. dstID

for pull executions). The cache line ID of the irregData line is determined by the next-ref engine using

simple address arithmetic (cachelineID = (addr−(irreg_base))
64 ). The current destination being processed

by a pull execution is tracked in a currVertex register located at the LLC (Figure 4.9). The currVertex

register is updated by a new update_index instruction which allows software to pass graph application

information (i.e. current vertex) to the LLC. The constants used in finding next reference of a cache line

(epoch and sub-epoch size) are stored in special memory mapped registers co-located at the LLC and are

configured once before the execution. (For 8-bit quantization, E pochSize = ceil(numVertices/256) and

SubE pochSize = ceil(E pochSize/127)). With all the necessary information (cache line ID, currDstID,

constants), the next-ref engine computes next references by accessing Rereference Matrix entries for

each irregData line in the eviction set; storing the computed next references in the next-ref buffer.

The next-ref engine then searches the next-ref buffer to find the way with the largest (i.e., furthest
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in future) next reference value, settling a tie using a baseline replacement policy (P-OPT uses DRRIP). The

next-ref engine starts its computations immediately after an LLC miss, overlapping the replacement

candidate search with the fetch from DRAM. A P-OPT implementation could pipeline computing a next

reference from a way’s Rereference Matrix entry with fetching the Rereference Matrix entry for the next way.

DRAM latency hides the latency of sequentially computing next references for each way in the eviction set,

based on LLC cycle times from CACTI [131] (listed in Table 4.1).

4.4.4 Streaming Rereference Matrix Columns into the LLC

P-OPT stores current and next epoch columns of the Rereference Matrix in the LLC. At an epoch boundary,

P-OPT streams in a new next epoch column and treats the previous next epoch column as the new current

epoch column. To transfer Rereference Matrix entries from memory to LLC, P-OPT uses a dedicated

hardware unit called the streaming engine similar to existing commodity data streaming hardware (Intel

DDIO [53, 62] allows ethernet controllers to directly write data into an LLC partition). The programmer

invokes the streaming engine at every epoch boundary using a new stream_nextrefs instruction. The

instruction swaps pointers to the current and next epoch (Figure 4.8) and streams in the next epoch column

of the Rereference Matrix into the LLC locations pointed by set-base and way-base for the next epoch.

Graph applications need to be restructured slightly to ensure that the streaming engine is invoked between

two epochs (to ensure that all epochs operate on accurate Rereference Matrix data). Doing so does not impose

a performance penalty because the streaming engine is guaranteed peak DRAM bandwidth to transfer

Rereference Matrix data between epochs. Moreover, streaming engine latency is not a performance

problem because epoch boundaries are infrequent.

4.4.5 Supporting NUCA Last Level Caches

While our discussion so far assumed a monolithic, UCA LLC, P-OPT is also efficient for the increasingly

common NUCA LLCs [99]. We consider Static NUCA (S-NUCA) [124] with addresses statically partitioned

across physically-distributed banks. The key NUCA challenge is to ensure that Rereference Matrix accesses

during replacement are always bank-local. A typical S-NUCA system stripes consecutive cache lines across

banks (bankID = (addr >> 6)%numBanks). Striping both Rereference Matrix and irregData cache

line across banks cannot guarantee bank-local accesses to Rereference Matrix data at replacement time
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because a single cache line of Rereference Matrix data contains next references for 64 irregData cachelines

(Figure 4.8). Ensuring bank-local Rereference Matrix accesses requires that for every Rereference Matrix

cache line mapped to a bank, all 64 of its corresponding irregData cache lines must also map to the same

bank.

P-OPT uses a modified mapping to distribute Rereference Matrix entries and irregData across NUCA

banks. If P-OPT stripes Rereference Matrix cache lines across banks, the system must interleave irregData

in blocks of 64 cache lines across NUCA banks (i.e. bankID = (addr >> (6+6))%numBanks). P-OPT

implements this modified mapping policy for irregData using Reactive-NUCA [80] support. Reactive-

NUCA allows different address mapping policies for different pages of data through simple hardware and

OS mechanisms. P-OPT uses the modified mapping policy only for irregData (which P-OPT assigns to a

single 1GB Huge Page) and uses the default, cache line striped S-NUCA policy for all other data (including

Rereference Matrix data).

P-OPT needs minor hardware changes for NUCA LLCs. First, P-OPT needs a per-bank copy of

the registers used to track Rereference Matrix columns (set-base, way-base, currPtr, nextPtr in

Figure 4.8). Second, the irreg_base, irreg_bound, and currVertex registers are global values that

need to be shared or replicated across NUCA banks. Last, P-OPT needs per-bank next-ref engine and

next-ref buffers, because multiple banks may be concurrently evicting cache lines.

4.4.6 Generalizing P-OPT

With simple extensions, P-OPT supports multi-threading, multiple irregularly-accessed data streams, and

context switches.

Supporting Parallel Execution: P-OPT supports parallel multi-threaded execution. In a multi-threaded

execution, multiple active vertices are being traversed at a time (i.e., a unique currDstId for each thread)

and P-OPT needs to select one of the active vertices for next reference computation (Algorithm 5; Lines

8-12). Thanks to pervasive, existing load balancing support in graph processing frameworks, different threads

already process vertices in a narrow range. To guarantee that all threads always process vertices in the same

epoch, P-OPT requires slight modification of the application to execute epochs serially (vertices within an

epoch are executed in parallel). Executing epochs serially allows P-OPT to share the same Rereference

Matrix columns across all threads. Due to the relatively small number of epochs (256 in the default P-OPT
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configuration) each epoch consists of a large number of vertices and restricting parallelism to only within

epochs does not significantly impact performance. We empirically determined that assigning currDstID to

be the vertex being processed by a software-designated main thread is an effective policy; providing similar

LLC miss rates with P-OPT and T-OPT for multi-threaded graph applications as for serial executions.

Handling Multiple Irregular Data Streams: P-OPT can support multiple irregular data structures using

three architecture changes. First, P-OPT holds a separate Rereference Matrix for each irregular data

structure (only if the irregular data structures span different number of cache lines, otherwise a single

Rereference Matrix can be shared). Second, P-OPT reserves the minimum number of ways in the LLC

to hold the Rereference Matrix data for all the different irregular data structures. The system maintains

a separate set-base and way-base register for each irregular data structure. Third, P-OPT maintains

an irreg_base and irreg_bound register for each irregular data structure to use the right Rereference

Matrix data corresponding to each data structure. We observe that tracking two irregular data structures –

frontier and srcData/dstData (for pull/push executions) – covers many important graph applications.

If an application has more irregular data streams (which is rare), a programmer could re-structure the code to

use an Array-of-Structures (AoS) format, combining all irregular accesses to a single array.

Virtualization: The Rereference Matrix in P-OPT only tracks reuse among graph application data. If

applications share LLC, P-OPT may unfairly prefer caching graph data over other data. To remain fair,

we assume per-process way-partitioning (i.e., via Intel CAT [7]) and that P-OPT only replaces data in the

graph-process-designated LLC ways. P-OPT supports context switches, by saving its registers (set-base,

way-base, irreg_base, irreg_bound, currVertex) with the process context. On resumption, P-OPT

invokes the streaming engine to re-fetch Rereference Matrix contents into reserved LLC ways. Static

partitioning of the cache ensures that P-OPT does not monopolize the shared LLC in the presence of multiple

co-running applications. Alternatively, P-OPT can be synergistic with existing application-aware shared

cache management policies [85, 86, 147]. Studying these interactions are beyond the scope of this work.

4.4.7 Implementation Complexity

P-OPT has low architectural complexity. P-OPT stores the replacement metadata (Rereference Matrix

columns) within the LLC and, hence, does not require additional storage for tracking next references. P-OPT

adds next-ref buffers to temporarily store next references during replacement. The size of next-ref
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buffers state is bounded by the maximum cache-level parallelism at the LLC. For example, an 8-core

architecture supporting 10 outstanding L1 misses (i.e. 10 L1 MSHRs) allows 80 concurrent LLC accesses.

Each next-ref buffer tracks 1B per LLC way. For a 16-way LLC, each next-ref buffer tracks 16B

of information. Therefore, a worst case maximum size for next-ref buffers is 1.25KB (80 * 16B).

In practise, fewer next-ref buffers would be sufficient because graph applications lack memory-level

parallelism [27, 171]. The next-ref engine is a simple FSM that only needs support for integer division

and basic bit manipulation.

4.5 Cache Locality Improvements with P-OPT

We evaluate P-OPT, showing significant performance and locality improvements across a range of graph

analytics workloads and diverse set of input graphs. We also compare P-OPT to prior graph-specific cache

locality optimizations. Before presenting the locality improvements with P-OPT, we describe our evaluation

setup.

4.5.1 Evaluation Setup

The following subsection briefly describes the platform, graph workloads, and input graphs used for evaluating

P-OPT.

Platform details: We use the Sniper [38] simulator to measure performance, using its default Beckton

microarchitecture configuration (which is based on Intel Nehalem). Table 4.1 describes our baseline multi-

core architecture, with cache timing from CACTI [131]. We disable prefetching in our study because

prior work [25] observed that conventional stream prefetchers are ill-suited to handle the irregular memory

accesses dominating graph applications. We made several improvements to sniper to better model P-OPT’s

performance effects. We ensure that a graph application in P-OPT sees reduced effective Last Level Cache

capacity and apply P-OPT’s modified S-NUCA policy for irregular data structures. We model contention

between demand accesses and Rereference Matrix accesses within the NUCA banks. When reporting P-OPT

performance numbers, we also account for the latency of the streaming engine to bring Rereference

Matrix columns into the LLC before every epoch. To faithfully model this stop-the-world event, we slightly

modify parallel graph applications to process epochs serially and use parallelism only within epochs (only



CHAPTER 4. PRACTICAL OPTIMAL CACHE REPLACEMENT FOR GRAPH ANALYTICS 78

P-OPT executions use the modified version while all the other policies operate on unmodified versions of

parallel graph applications).

Cores 8 OoO-cores, 2.266GHz, 4-wide issue, 128-entry ROB, Pentium M Branch Predictor
L1(D/I) 32KB, 8-way set associative, Bit-PLRU replacement policy, Load-to-use = 3 cycles
L2 256KB, 8-way set associative, Bit-PLRU replacement policy, Load-to-use = 8 cycles
LLC 3MB/core, 16-way set associative, DRRIP replacement [86], Load-to-use = 21 cycles (local

NUCA bank), NUCA bank cycle time = 7 cycles
NoC Ring interconnect, 2 cycles hop-latency, 64 bits/cycle per-direction link B/W, MESI coherence
DRAM 173ns base access latency

Table 4.1: Simulation parameters

For faster design space exploration, we built a Pin [119]-based cache simulator4 to model the cache

hierarchy in Table 4.1 and to evaluate various LLC replacement policies. The P-OPT and T-OPT results

reported earlier in the paper came from this cache simulator. We validated our cache simulator against Sniper

(LLC statistics from the cache simulator were within 5% of Sniper’s values). Unless specified, the cache-only

simulator models serial execution of graph kernels to avoid thread-scheduling noise in Pin. The Sniper

simulations evaluate parallel graph applications.

Graph Workloads: We use five graph applications from GAP [27] and Ligra [154]. To avoid framework

overheads, we re-wrote Ligra benchmarks as stand-alone applications (which yielded an average speedup of

1.55x over the original implementation).

PR [27] CC [27] PR-δ [154] Radii [154] MIS [154]
irregData ElemSz 4B 4B 8B & 1bit 8B & 1bit 4B & 1bit
Execution style Pull-Only Push-Only Pull-Mostly Pull-Mostly Pull-Mostly
Transpose CSR CSC CSR CSR CSR
Uses frontier N N Y Y Y

Table 4.2: Applications

These applications have a diverse set of graph access patterns and properties (Table 4.2). Pagerank (PR)

iteratively updates per-vertex ranks until convergence. Connected Components (CC) applies the Shiloach-

Vishkin algorithm to compute largest connected components. Pagerank-delta (PR-δ ) is a frontier-based

version of Pagerank that only updates vertices that have not converged. Radii is a frontier-based application

using concurrent BFS traversals to approximate a graph’s radius. Maximal Independent Set (MIS)

iteratively processes vertex subsets to estimate the maximal independent set. Pagerank-delta, Radii, and

Maximal Independent Set use direction-switching [26] and frontiers encoded as bit-vectors. To reduce

4https://github.com/CMUAbstract/POPT-CacheSim-HPCA21
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simulation time, we simulate one Pagerank iteration (it shows no performance variation across iterations).

For other applications, we use iteration sampling like prior work [128, 130] and simulate a subset of pull

iterations in detail.

Input Graphs: We run our analyses on the graphs listed in Table 4.3. The graphs are diverse in size and

degree-distributions (power-law, community, normal, bounded-degree). We do not simulate Radii on HBUBL

because its high diameter causes Radii to never switch to a pull iteration.

DBP UK-02 KRON URAND HBUBL
# Vertices (in M) 18.27 18.52 33.55M 33.55M 21.20
# Edges (in M) 136.53 292.24 133.51 134.22 63.58

Table 4.3: Input Graphs: All graphs exceed the LLC size.

4.5.2 P-OPT Improves Performance

Figure 4.10 shows performance and cache locality improvements achieved by P-OPT and an idealized T-OPT

compared to the LRU and DRRIP replacement policies. As discussed in Section 4.1, the state-of-the-art

DRRIP replacement policy offers an average performance improvement of only 9% relative to the simple

LRU policy due to its inability to capture graph application-specific reuse patterns. P-OPT outperforms

DRRIP across the board, with average speedup of 22% and LLC miss reduction of 24%. Furthermore,

P-OPT’s mean speedup is within 12% of the ideal speedup (with T-OPT).
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Figure 4.10: Speedups and LLC miss reductions with P-OPT and T-OPT: The T-OPT results represent
an upper bound on performance/locality because T-OPT makes optimal replacement decisions using precise
re-reference information without incurring any cost for accessing metadata. P-OPT is able to achieve
performance close to T-OPT by quantizing the re-reference information and reserving a small portion of the
LLC to store the (quantized) replacement metadata.

Figure 4.10 shows four key findings. First, P-OPT is effective for applications with dense frontiers

(Pagerank and Connected Components) and sparse frontiers (Radii, Maximal Independent Set, and
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Pagerank-delta). P-OPT offers higher speedup for Pagerank and Connected Components because

P-OPT needs to only store the Rereference Matrix data for a single irregular data structure (other applications

need Rereference Matrix data for srcData and frontier). Second, P-OPT improves performance and

locality for pull and push executions. Third, P-OPT provides benefits for a diverse set of graphs. KRON is one

exception with both P-OPT and T-OPT offering slightly smaller improvement over DRRIP. These synthetic

KRON graphs have highly skewed degree distributions. The more skewed the distribution, the more likely it is

for hub vertices to hit by chance in cache; DRRIP has miss rate of 40% for KRON compared to a miss rate

of 70% for other graphs. Finally, P-OPT’s speedup compared to DRRIP (22%) is significantly higher than

state-of-the-art policies like Hawkeye and SHiP. Hawkeye and SHiP report average speedups of just 2.54%

and 1.78% over DRRIP [84, 167]. While Hawkeye and SHiP provide small benefits, P-OPT leverages graph

structure and offers a significant improvement over DRRIP.

4.5.3 P-OPT Scales with Graph Size

P-OPT remains performant as graph size increases. P-OPT stores the current and next epoch columns

of the Rereference Matrix in LLC (Figure 4.9). Larger graphs need to reserve more LLC ways to store

Rereference Matrix columns because the irregular data spans more cache lines. We evaluate a P-OPT variant,

P-OPT-Single-Epoch (P-OPT-SE), that computes next references using only the current epoch column of the

Rereference Matrix. P-OPT-SE encodes information about the next epoch within the current epoch column

by repurposing the second most significant bit of an entry to track if the cache line is accessed in the next

epoch (Figure 4.6). With the Rereference Matrix modification, lines 15-18 of Algorithm 5 no longer access

the Rereference Matrix entry corresponding to the next epoch (nextEntry)5. P-OPT-SE stores only the

current epoch column in LLC. However, the reduced cache footprint in P-OPT-SE comes at the expense of

reduced next reference quality. Down two bits per entry, the range of next references tracked in P-OPT-SE is

halved from 128 to 64 — P-OPT-SE is forced to use coarser quantization.

In Figure 4.11, we compare P-OPT-SE (one column, two reserved bits) to P-OPT (two columns, one

reserved bit) for Pagerank on a set of graphs. With fewer than 32 million vertices, P-OPT has better LLC

locality. For these graphs, P-OPT reserves fewer than 3 ways of 16 and the benefit of better replacement

information (i.e. current and next epoch) overshadows the reduction in effective LLC capacity. However, in

5If the second MSB of the Rereference Matrix entry indicates no reference next epoch, P-OPT-SingleColumn conservatively
returns maximum value since it avoids accessing nextEntry
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Figure 4.11: LLC miss reductions with P-OPT and P-OPT-SE: Boxes above bar groups indicate the
number of LLC ways reserved to store next rereferences. Graphs are listed in increasing order of number of
vertices.

larger graphs, P-OPT-SE has better locality because of P-OPT’s high reduction in effective LLC capacity.

The result highlights the tension between next reference quantization and the effective LLC capacity; to

improve upon P-OPT’s performance gains, future solutions must reduce the metadata footprint without

significantly compromising the quality of replacement metadata.

4.5.4 Graph-agnostic improvements with P-OPT

We compared P-OPT to prior work on locality optimizations for graph analytics. Like prior work [60, 128],

P-OPT observes that cache locality is key to improving graph processing performance. Unlike prior work,

P-OPT is graph-agnostic, not reliant on specific structure or vertex ordering of a graph.

GRASP [60] is a replacement policy for graphs with very skewed degree distributions. GRASP expects

a pre-processed input vertex array and GRASP uses Degree-Based Grouping (DBG) [59] to order vertices.

We reordered our graphs using the author’s DBG implementation and implemented GRASP in our cache

simulator, based on code from the authors. Figure 4.12(a) shows locality improvements from GRASP and

P-OPT for Pagerank on DBG-ordered graphs. P-OPT outperforms GRASP in three ways. First, GRASP

works well for graphs with skewed degree distributions, but is less effective for other inputs; the best result

for GRASP is for the highly skewed GPL graph. P-OPT is agnostic to graph structure, offering consistent

improvement. Second, even for skewed graphs, P-OPT has higher LLC miss reduction than GRASP because

GRASP is heuristic-based, assuming vertices with similar degrees have similar reuse. P-OPT, instead,

approximates ideal next reference values capturing dynamically varied patterns of reuse. Last, GRASP

requires the input graph to be reordered (using DBG) whereas P-OPT is applicable across any vertex ordering.
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(a) P-OPT compared to GRASP

DBP UK-02 KRON URAND HBUBL ARAB GMEAN
Graphs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

LL
C 

M
is

s 
Re

du
ct

io
n

2.4x
App - PageRank

VO+DRRIP BDFS+DRRIP VO+P-OPT

(b) P-OPT compared to HATS-BDFS

Figure 4.12: P-OPT offers graph-agnostic improvements: In contrast to prior locality optimizations for
graph workloads, P-OPT’s benefits are not restricted to specific structural properties or vertex orderings of
input graphs.

HATS-BDFS [128] is a dynamic vertex-scheduling architecture that improves graph cache locality. HATS

runs hardware Bounded Depth First Search (BDFS) to schedule vertices, yielding locality improvements in

graphs with community structure [111]. We implemented in our cache simulator an aggressive HATS-BDFS

that assumes no overhead for BDFS vertex scheduling. Figure 4.12(b) compares P-OPT on the standard vertex

schedule (“Vertex Ordered” per HATS [128]) against HATS-BDFS. The data shows that HATS-BDFS’s

improvements are sensitive to graph structure. For its target use-cases (i.e., community-structured graphs

– UK-02 and ARAB), BDFS offers locality improvements, even outpacing T-OPT because BDFS improves

locality at all cache levels. However, for graphs without community structure (even power-law graphs

such as DBP and KRON), BDFS increases LLC misses. In contrast, P-OPT offers consistent LLC locality

improvements, leading to a higher mean LLC miss reduction compared to HATS-BDFS.

4.5.5 Sensitivity Studies

We studied sensitivity of P-OPT’s cache performance to the quantization level used in the Rereference Matrix,

LLC geometry, and preprocessing cost for Rereference Matrix construction. We measure the sensitivity of
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P-OPT across various parameters.

Sensitivity to quantization level: We assumed 8-bit next reference entries up to this point. Figure 4.13

shows P-OPT’s performance with 4-bit, 8-bit, and 16-bit quantization in the Rereference Matrix. This dataset

omits the costs of storing Rereference Matrix columns in LLC, reporting limit-case locality improvements for

a given quantization level. Due to quantization, multiple lines might have the same rereference value during

replacement leading to a tie (as described in Section 4.4.3, ties are resolved by a baseline replacement policy;

our evaluation assumes DRRIP). On average, we observe that for P-OPT with 4b, 8b, and 16b quantization

of rereferences, 41%, 12%, and 0% of all LLC replacements respectively result in a tie. The already low

percentage of replacement ties at 8b quantization explains why P-OPT sees little benefit with higher precision.
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Figure 4.13: P-OPT at different levels of quantization: With 8-bit quantization, P-OPT is able to provide
a close approximation of the ideal (T-OPT).

Sensitivity to LLC parameters: We measured P-OPT’s sensitivity to LLC capacity and associativity.

Figure 4.14 shows data for Pagerank across all graphs. The benefit offered by P-OPT over DRRIP increases

with LLC capacity because the fraction of LLC consumed for Rereference Matrix columns reduces. P-OPT

also offers higher miss reduction with higher LLC associativity. As associativity increases, P-OPT has more

options for replacement and makes a better choice by considering next references of all ways in the eviction

set.

Preprocessing cost of P-OPT: P-OPT uses a Rereference Matrix to guide cache replacement and the Reref-

erence Matrix is built from the transpose. The main performance results (Figure 4.10) omitted preprocessing

costs because the Rereference Matrix is algorithm agnostic and needs to be created only once for a graph.

We experimentally determined that building the Rereference Matrix imposes low overhead on a real 14-core

Intel Xeon processor (we used 8 threads and Intel CAT to set the LLC to 24.5MB to mirror the simulated

architecture in Table 4.1). Table 4.4 shows time spent building the Rereference Matrix compared to a



CHAPTER 4. PRACTICAL OPTIMAL CACHE REPLACEMENT FOR GRAPH ANALYTICS 84

8MB 16MB 24MB 32MB
LLC sizes

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

LL
C 

M
is

s 
Re

d.

App - PageRank

DRRIP
P-OPT

12ways 16ways 20ways 24ways
LLC ways

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

LL
C 

M
is

s 
Re

d.

App - PageRank

DRRIP
P-OPT

Figure 4.14: Sensitivity to LLC size and associativity: P-OPT’s effectiveness increases with LLC size and
associativity.

baseline execution of Pagerank. On average, constructing the Rereference Matrix accounts for 19.8% of

Pagerank runtime 6. Figure 4.10 shows that without the Rereference Matrix construction cost, P-OPT offers

a mean performance improvement of 36% over DRRIP 7 for Pagerank. Since the Rereference Matrix is

algorithm agnostic, the preprocessing cost of P-OPT can be easily amortized by reusing the Rereference

Matrix across multiple applications running on the same graph. However, even in scenarios where the

Rereference Matrix construction cost cannot be amortized (e.g., single-shot graph analytics), the relatively

small cost of constructing the Rereference Matrix allows P-OPT to provide a net speedup even after including

the preprocessing cost.

DBP UK-02 KRON URND HBUBL
POPT Preprocessing Time 0.99s 1.25s 1.59s 1.77s 0.92s
PageRank Execution Time 8.83s 24.64s 4.84s 11.06s 0.89s

Table 4.4: Relative preprocessing cost for P-OPT

4.6 Related Work

We compared P-OPT to the most closely related works in Sections 4.1 and 4.5. We include additional

comparisons spanning three areas – cache replacement, irregular-data prefetching, and custom architectures

for graph processing.

Replacement Policies: Hawkeye and SHiP outperform many classes of replacement policies [84, 167]. One

such class of policies are policies like SDBP [97] and Leeway [61] that perform Dead-Block Prediction

(DBP) (i.e. find cache lines that will receive no further accesses). P-OPT can more accurately identify

6HBUBL is an exception because Pagerank converges unusually quickly (3 iterations)
7Server-class processors have been shown to use a variant of DRRIP [166]
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dead lines because it tracks next references of irregular lines (Indeed, P-OPT outperforms Hawkeye and

GRASP which were shown to be better than SDBP and Leeway respectively). By using close approximation

of precise next references (Section 4.5.5), P-OPT is expected to outperform heuristic-based reuse distance

predictions [55, 96].

Irregular Data Prefetching: IMP [169], HATS-VO [128], and DROPLET [25] are recent prefetchers

that were designed primarily to handle irregular accesses in graph processing and sparse linear algebra

applications. All three schemes are effective at reducing latency of irregular accesses but not necessarily

memory traffic. P-OPT reduces memory traffic through better LLC locality, making better use of the available

DRAM bandwidth. We note that next references in a graph’s transpose could also be used for timely

prefetching of irregular data. We leave the exploration of new prefetching mechanisms derived from the

Rereference Matrix and the interplay of P-OPT with hardware-based [10,25,128,169] or software-based [11]

irregular prefetching for future work.

Custom architectures for graph processing: Minnow [171] is an architecture for efficient worklist manage-

ment and optimizes worklist-based graph applications [145]. OMEGA [9] is a scratchpad-based architecture

for graph processing on power-law input graphs. Custom accelerators [75, 139] have been proposed that

optimize graph framework operations to accelerate common sub-computations across all applications using

the framework. P-OPT observes the pervasiveness of poor cache locality in graph applications and leverages

the readily-available transpose to guide better cache replacement. SpArch [179], an SpGeMM accelerator,

proposed dedicated hardware to run ahead (up to a fixed depth) and compute next references for irregular

data. P-OPT also uses next references for better replacement but relies on the transpose to more efficiently

access next references.

4.7 Discussion

Belady’s optimal cache replacement policy is considered an impractical replacement policy in most cases

because it relies on oracular knowledge of future accesses. The key insight presented in this chapter is that a

graph’s transpose encodes the next reference information for all vertices at all points of a graph application’s

execution, essentially serving as the oracle for optimal cache replacement (Section 4.2). The second major

insight present in this chapter is that, for the purposes of optimal cache replacement, we do not need precise

next reference information. A quantized version of the transpose (Rereference Matrix) contains sufficient
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information for P-OPT to provide significant cache miss reductions even after including the overheads of

accessing the replacement metadata (i.e. quantized next references). Since the Rereference Matrix is just

a quantized representation of the information in a graph’s transpose, constructing the Rereference Matrix

from the transpose incurs low overhead (Table 4.4). Therefore, P-OPT readily applies to graph analytics

workloads which already store both the CSR and CSC representations (Section 1.4.2). For the same reason,

P-OPT should also easily generalize to sparse linear algebra kernels where the input matrices are stored in

the CSR and CSC formats.

In conclusion, P-OPT leverages the information present within the commonly used CSR and CSC repre-

sentations to make near-optimal cache replacement decisions. Consequently, P-OPT is able to significantly

improve cache locality compared the heuristics-based state-of-the-art cache replacement policies.



Chapter 5

Generalizing Beyond Graph Analytics with

HARP

In the previous chapter, we saw that by leveraging the common graph representation (CSR and CSC), P-OPT

was able to improve cache locality across a range of graph applications on a diverse set of input graphs.

However, P-OPT’s benefits are restricted to graph analytics workloads (and other applications were inputs

are represented using CSR and CSC). It is desirable to have a more general cache locality optimization

since irregular memory accesses affect many applications beyond graph analytics. Propagation Blocking

is one such optimization. While Propagation Blocking was designed as a software-based cache locality

optimization for graph analytics and sparse matrix vector multiplication [28, 37], we show that Propagation

Blocking generalizes beyond graph analytics [19]. In this chapter, we show that Propagation Blocking

only requires that an application perform irregular updates and exhibit unordered parallelism (these two

properties cover a broad range of applications). Due to Propagation Blocking’s versatility, we focused on

identifying the inefficiencies of a Propagation Blocking execution on conventional multicore processors and

proposed architecture support to further improve the performance gains offered by Propagation Blocking.

Our proposed architecture, HARP, optimizes the Propagation Blocking execution of a range of applications

with irregular memory updates, offering speedups of up to 3.78x compared to Propagation Blocking. Like

P-OPT (Chapter 4), HARP’s locality improvements are agnostic to the input graph. However, unlike P-OPT,

HARP does not make any assumptions about the input representation which allows HARP to generalize to

many irregular applications beyond just graph analytics.

87
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5.1 Pervasiveness of Irregular Memory Updates

Irregular memory access patterns are not unique to graph analytics workloads. Many applications perform

irregular memory updates which causes these applications to make sub-optimal use of the on-chip cache

hierarchy. In this section, we identify the common sources of irregular memory updates and characterize the

poor cache locality resulting from such irregular updates.

5.1.1 Sources of Irregularity

A common source of irregular memory accesses is the input data representation used by an application. Graph

analytics and sparse linear algebra applications often analyze inputs that are extremely sparse (a typical

adjacency matrix is > 99% sparse [50]). Therefore, compressed formats are essential for storing the input

graph/matrix in memory efficiently (Figure 5.1). The popular Compressed Sparse Row (CSR) format offers

the additional benefit of quickly identifying a vertex’s neighbors. As shown in Figure 5.1, the CSR uses

two arrays to represent outgoing edges (sorted by edge source IDs). The Neighbor Array (NA) contiguously

stores each vertex’s neighbors and the Offsets Array (OA) stores the starting offset of each vertex’s neighbor

list in the NA. While the CSR (and its transpose CSC) are a memory efficient representations allowing quick

access to vertex neighbors, they can lead to irregular memory accesses. The contents of the CSR/CSC are

arbitrarily ordered (contents of the NA in Figure 5.1) and are defined by the sparsity pattern and vertex

ordering of the input. Therefore, applications traversing the CSR/CSC and accessing a second data structure

based on the indices in the NA would perform irregular memory accesses. Besides data representations, other

input properties such as the distribution of keys for counting sort [45] can also contribute to irregular memory

accesses.
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Figure 5.1: Popular Compressed Representations
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5.1.2 Poor Locality of Irregular Updates

Applications with irregular memory updates suffer from poor cache locality. Conventional cache hierarchies

are designed to optimize for spatial and temporal locality both of which are absent in irregular memory

access patterns. Using hardware performance counters, we characterized the Last Level Cache (LLC) miss

rates of applications performing irregular memory updates (methodology listed in Section 5.5.1). Figure 5.2

shows that a broad range of applications spanning graph analytics, graph pre-processing, integer sorting,

and sparse linear algebra suffer from poor LLC locality because of irregular updates. Prior graph analytics

characterization studies [25, 176] have shown that the implication of high LLC miss rates is that graph

applications can spend up to 80% of their execution time stalled on DRAM. The high LLC miss rates

resulting from irregular updates emphasizes the need for a cache locality optimization to improve the

performance of these applications.
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Figure 5.2: Locality of irregular updates: Applications with irregular updates experience a high LLC miss
rate.

5.2 Versatility of Propagation Blocking

Propagation Blocking (PB) has been shown to be an effective optimization for graph analytics work-

loads [28, 100]. We show that PB applies more broadly to any application exhibiting unordered parallelism

and, therefore, PB generalizes to applications beyond graph analytics. Unfortunately, software PB incurs

fundamental overheads that prevent achieving optimal performance. We conclude this section by identifying

the opportunity to improve PB’s benefits with architecture support.
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5.2.1 High level Overview of Propagation Blocking

Propagation Blocking (PB) was originally developed to optimize Pagerank [28]. Figure 5.3 shows an

unoptimized Pagerank execution operating on a CSR input graph. The Pagerank execution streams in

edges and auxiliary data (auxData), and updates the vtxData array at dstk using the value auxData[srck].

The stream of indices (dstk) in the CSR are unordered and span the full range of the graph’s vertex IDs

(Figure 5.1). Therefore, an unoptimized SpMV execution suffers from poor cache locality because the

irregular update’s working set exceeds on-chip cache capacity.

PB improves cache locality of Pagerank by breaking the execution into two phases: Binning and

Accumulate. During Binning, a core streams in edges and auxiliary data but the core does not directly update

vtxData elements. Instead, the core writes the pair of index location and update value (dstk,auxData[srck])

to one of several bins created by PB. A bin is a data structure that sequentially stores each update belonging to

a particular range of data elements. Each bin stores updates for a disjoint range of elements and the union of

all the bin-ranges equals the total number of elements (i.e. number of vertices in the graph). Once all updates

have been written to bins, PB starts the Accumulate phase. During Accumulate, the core sequentially accesses

each tuple in a bin before moving to the next bin (Figure 5.3). Since each bin stores updates for a small

index range, only a part of the vtxData array is accessed at any point in time which reduces the range of

random writes, allowing the bin’s updates to fit in cache. In this work, we focus on parallel PB which simply

creates per-thread duplicates of all bin structures in Figure 5.3, eliminating the need for synchronization

during Binning.

5.2.2 Applicability of Propagation Blocking

The effectiveness of PB across many graph workloads [28, 37, 100] has prompted hardware optimizations for

PB [90,130,148]. However, these hardware PB optimizations rely on the application performing commutative

updates (i.e. the order of applying updates does not affect the final result). Commutative updates allow

coalescing multiple updates destined to the same index, reducing PB’s main memory traffic without affecting

application correctness.However, we find that commutativity is not necessary to benefit from PB.

We observe that PB applies to non-commutative kernels as well. Algorithm 6 shows a part of the kernel for

building a CSR from an Edgelist 1. The kernel (henceforth referred to as Neighbor-Populate) uses a copy

1Building a graph data structure from an Edgelist representation is one of three kernels used by Graph500 [133] to benchmark
supercomputers based on their graph processing capabilities.
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Figure 5.3: High level overview of Propagation Blocking (PB): PB reduces the range of irregular updates.
Note that the Update List exists only at a logical level and is never physically materialized.

Algorithm 6 Kernel to populate neighbors (Edgelist-to-CSR)

1: offsets← PrefixSum(degrees) . Offsets Array (OA) in Figure 5.1
2: par_for e in EL do
3: neighs[offsets[e.src]]← e.dst . Neighbors Array (NA) in Figure 5.1
4: AtomicAdd(offsets[e.src],1)

Algorithm 7 PB version of Algorithm 6

1: offsets← PrefixSum(degrees)
2: par_for e in EL do . Binning Phase
3: tid← GetThreadID()
4: binID← (e.src/BinRange)
5: bins[tid][binID]← (e.src,e.dst)

6: par_for binID in NumBins do . Accumulate Phase
7: for tid in NumThreads do
8: for tuple in bins[tid][binID] do
9: offsetVal← offsets[tuple.src]

10: neighs[offsetVal]← tuple.dst
11: Add(offsets[tuple.src],1)

of the Offsets Array (OA) to populate the contents of the Neighbors Array (NA) in Figure 1.2. The updates to

the offsets array in Neighbor-Populate (Algorithm 6; line 4) are not commutative because the order of

updates to the offsets array determines the contents of the NA. The updates are not commutative because

Neighbor-Populate uses the offsets array to populate the neighs array, and the order of updates to the

offsets array changes the results in the neighs array2. Algorithm 7 shows how PB optimizes the kernel.

2Commutativity optimizations that coalesce updates to the offsets array elements would break correctness by skipping
elements of the NA.
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The Binning phase streams in edges and assigns each edge to a bin. After Binning reorganizes edges into

bins, Accumulate processes the edges in each bin, updating offsets and neighs with high cache locality.

The PB optimization is applicable to the non-commutative Neighbor-Populate kernel because a vertex’s

neighbors can be listed in any order; the non-commutative updates permit unordered parallelism [82, 88].

This example shows that the applicability of PB goes beyond commutative updates: the PB optimization

applies to applications with irregular updates and unordered parallelism. All the applications listed in

Figure 5.2 can benefit from PB however not all applications perform commutative updates and, therefore,

cannot benefit from existing hardware PB optimizations. The focus of our work is to develop a general

hardware PB optimization that does not rely on update commutativity, enabling acceleration of a broader

range of applications.

5.2.3 Limitations of Propagation Blocking

The performance of all PB executions on conventional multicore processors is primarily limited in two

ways: (i) PB must compromise by selecting a sub-optimal number of bins and (ii) binning updates requires

executing many additional instructions, which erode PB’s gains.

Compromising on the number of bins: The locality of the Accumulate phase (Figure 5.3) is highly

sensitive to the number of bins because the range of updates belonging to a bin (i.e. range of irregular updates)

is inversely related to the number of bins (BinRange = |UniqueIndices|
|Bins| ). The Binning phase is also sensitive to

the number of bins. To amortize the cost of writing to bins, the Binning phase uses cacheline-sized coalescing

buffers for each bin that accumulate updates to bins and enable coarse granularity writes to bins. Figure 5.4

shows the performance and cache locality of the Binning and Accumulate phases as the number of bins vary,

for the Neighbor-Populate kernel. The data in Figure 5.4b show normalized L1 load misses (broken into

L2, LLC, and DRAM accesses) collected using hardware performance counters (Section 5.5.1). Optimal

Accumulate performance is achieved when there are a large number of bins because the range of locations

modified by a bin’s updates is reduced to the point that they can fit within the L1 cache. However, selecting a

large number of bins is not feasible because the Binning phase achieves the worst performance as all the bins’

coalescing buffers do not fit in the L1 and L2 caches (Figure 5.4b). Competing requirements on the bin range

by Binning and Accumulate forces all PB execution to make a compromise and select a medium number of

bins (red dotted line in Figure 5.4a), leading to sub-optimal performance in both phases. The architecture
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mechanism that we design in Section 5.3.2 shows how to break PB’s dependence on the number of bins and

get high performance in both phases without a compromise.
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Figure 5.4: Sensitivity of PB to the number of bins: The Binning phase achieves better locality with fewer
bins whereas the Accumulate phase prefers a large number of bin.

An ideal PB mechanism would use the best bin range for each phase – a large bin range for Binning and a

small bin range for Accumulate (green dotted lines in Figure 5.4a). Figure 5.5 shows PB’s performance gains

compared to this idealized version of PB. While this ideal PB variant is unrealizable, the data show ample

headroom for improvement. Using the optimal bin range in each phase, PB’s performance can improve by up

to 1.8x, amplifying its best case benefit over the unoptimized case to 8x.
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Figure 5.5: Ideal performance with Propagation Blocking: Allowing each phase to operate with the best
number of bins shows the headroom for performance improvement in PB.

Control overheads of Software PB: PB implemented in software requires executing extra instructions for

binning which degrades instruction level parallelism (ILP) by occupying core resources (e.g., reservation
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stations, load-store queue, reorder buffer). We found that PB executes up to 4x more instructions compared to

the baseline execution of Neighbor-Populate. The two inefficiencies of PB – compromising on the number

of bins and instruction overhead for binning updates – present an opportunity to improve the performance of

PB. In the next section, we discuss our architecture support for Binning (the dominant phase of PB as shown

in Table 5.1) that eliminates both inefficiencies of PB.

APPS→ PB Phases ↓ DC NP PR RD IS SPMV PINV TR SP

Medium
No. of Bins

Init 9.91% 5.68% 18.43% 23.75% 5.72% 0.29% 8.6% 14.63% 6.76%
Binning 73% 54.18% 47% 51.78% 44.47% 77.09% 56.11% 48.16% 14.26%
Accumulate 17.09% 40.14% 34.57% 24.47% 49.81% 22.61% 35.28% 37.21% 78.98%

Large
No. of Bins

Init 7.72% 6.01% 13.17% 18.22% 6.95% 0.22% 8.88% 11.96% 6.71%
Binning 86.15% 78.57% 65.52% 71.60% 77.94% 87.46% 64.42% 67.82% 17.1%
Accumulate 6.01% 15.42% 21.32% 10.18% 15.12% 12.32% 26.7% 20.22% 76.19%

Table 5.1: PB execution breakup: Binning dominates a PB execution both when using a medium no. of bins
(which offers the best overall PB performance) and when using a large no. of bins (which offers the best
Accumulate performance).

5.3 Optimizing Propagation Blocking with HARP

The core contribution of this paper is a new system called HARP3 that specializes the cache hierarchy to

eliminate the two inefficiencies of PB executions. HARP’s architecture extensions are specifically targeted

at improving Binning performance when there are a large number of bins. Since Accumulate is naturally

efficient with a large number of bins, the improved Binning performance with HARP allows achieving

performance close to ideal PB (Figure 5.5).

5.3.1 Inefficiencies of the Binning Phase

PB maintains bins in main memory that each accumulate irregular updates to disjoint sub-ranges of locations

during the Binning phase. Later, bins are sequentially processed and the updates of each bin are applied with

high cache locality during the Accumulate phase. The Binning phase uses per-bin, cacheline-sized coalescing

buffers (henceforth referred to as C-Buffers) to amortize the cost of writing update tuples to in-memory bins.

The size of index and update values determine the number of tuples that fit in a C-Buffer. For example, with

4B index and update values and a 64B cache line, a C-Buffer stores eight tuples. When a C-Buffer fills up, the

3Since PB is an instance of radix partitioning [28, 153], we named our system HARP (Hardware Assisted Radix Partitioning)
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core bulk-transfers all of the C-Buffer’s tuples into its corresponding bin in memory and clears the C-Buffer

to start collecting tuples again.

The Binning phase has two main sources of inefficiency. First, Binning suffers poor cache performance

when there are a large number of bins. Figure 5.6 shows why Binning performs poorly with many bins in a

typical 3-level cache hierarchy. With a large number of bins, all the per-bin C-Buffers do not fit in a small

cache (e.g., L1), increasing the average latency of inserting tuples into C-Buffers. Compounding the problem,

increased cache demands by other program data can displace C-Buffers to lower levels of cache (e.g., LLC),

further increasing access latency. The second main inefficiency in Binning is that C-Buffers are managed

entirely in software. Extra instructions need to be executed to write to C-Buffers, detect when a C-Buffer fills,

and bulk-transfer the C-Buffer’s tuples to in-memory bins.
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Figure 5.6: Comparing Binning phases of PB and HARP: HARP maintains a hierarchy of HW-managed
C-Buffers to provide the illusion of a small number of bins for Binning while actually using a large number
of bins for Accumulate. We do not show bins in DRAM for HARP (HARP uses Y3 bins in DRAM). The ratio
of per-level bin ranges (RL1,RL2,RLLC) in HARP are defined by the input range and cache sizes.
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5.3.2 An Architecture for Binning

HARP optimizes PB by enabling the selection of a large number of bins that offers optimal Accumulate

performance (Figure 5.4a) and changing the operation of the memory hierarchy to make Binning more

efficient with many bins. The key insight of HARP is to decouple Binning performance from the number of

bins in memory. Instead of using a single set of software-managed C-Buffers that can spread across the cache

hierarchy, HARP introduces a hierarchy of hardware-managed C-Buffers. Each level of the cache hierarchy

has its own set of C-Buffers with the number of C-Buffers in a level bounded by the capacity of that level.

Therefore, the L1 cache has the fewest C-Buffers and the Last Level Cache (LLC) has the most C-Buffers. In

contrast to software-PB where a single bin range maps update tuples to bins (Algorithm 7; Line 4), in HARP

each cache level has a unique bin range used to map tuples into one of the level’s C-Buffers. For example,

in Figure 5.6, the bin range used for mapping tuples into L1 C-Buffers is L1BinRange(RL1) =
|UniqIndices|

|Y1|

while the bin range for the LLC is LLCBinRange(RLLC) =
|UniqIndices|

|Y3| .

In HARP, a core interacts only with the L1 C-Buffers, writing tuples into one of the Y1 C-Buffers using by

the L1BinRange (L1Bu f f erID = Index
RL1

). When an L1 C-Buffer fills up, HARP does not transfer its contents

directly to an in-memory bin (as in software PB). Instead, HARP evicts the L1 C-Buffer by unpacking its

tuples and sending each tuple to its C-Buffer in the L2 cache. Unlike a traditional cache eviction where the

evicted line is sent to the next cache level as a whole, during an eviction each tuple in the filled C-Buffer in

level Li may need to be written to a different C-Buffer in the next cache level (Li+1). HARP writes each tuple

evicted from the filled L1 C-Buffer into one of Y2 C-Buffers in the L2 cache identified by the L2BinRange

(L2Bu f f erID = EvictedIndex
RL2

). Similarly, when an L2 C-Buffer fills up, HARP evicts it from L2 and sends

each of its tuples to one of the Y3 C-Buffers present in the LLC. In HARP, the number of bins in memory

equals the number of LLC C-Buffers. Therefore, when finally a LLC C-Buffer fills up, HARP transfers all the

tuples in the filled LLC C-Buffer to the corresponding bin in main memory, as in a software-PB execution.

During the Binning phase in a HARP execution, all the tuples generated by the core are inserted into the L1

C-Buffers, eventually evicted into L2 C-Buffers followed by the LLC C-Buffers, before finally being written

to the bins in memory.

The hierarchical buffering mechanism in HARP causes each C-Buffer eviction to scatter tuples across

the C-Buffers of the next cache level. A small number of eviction buffers between cache levels suffice to

hide the latency of scattering tuples and remove C-Buffer eviction latency off the critical path (Section 5.4.4).
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Consequently, for the example in Figure 5.6, during the Binning phase the core observes a latency of inserting

tuples into a small number of bins (Y1 C-Buffers at the L1) while actually operating on a large number of bins

in memory (equal to the Y3 C-Buffers at the LLC).

Besides hierarchical buffering, the HARP architecture offers a second major efficiency boost to Binning.

HARP relies on simple fixed function logic in each cache level’s controllers to handle C-Buffer management

operations (such as detecting when a C-Buffer fills, and unpacking tuples from a filled Li C-Buffer and

inserting each tuple to an appropriate Li+1 C-Buffer). HARP reserves space within each cache level to pin

C-Buffers for the entirety of Binning (Figure 5.6), allowing simple logic to determine the unique location of a

C-Buffer within a cache level. Offloading C-Buffer management to hardware allows HARP to eliminate the

additional instruction overhead of Binning in software-based PB.

5.4 Architecture Support for HARP

The HARP architecture extends a baseline multicore processor to optimize Binning and Accumulate phases

in parallel PB. HARP’s extensions include extensions to the cache controllers to manage Coalescing buffers

(C-Buffers), and a small amount of buffering to hide C-Buffer eviction latencies.

5.4.1 Caches Designed for Binning

HARP modifies the cache hierarchy in two ways. First, HARP uses widely available way-based cache

partitioning [7] to reserve space for C-Buffers within each cache level, ensuring that other program data never

displace C-Buffers. Second, HARP keeps a hierarchy of C-Buffers. Each level in the cache hierarchy has its

own set of C-Buffers bounded by the level’s capacity. HARP also uses a unique bin range for each cache

level to map update tuples into one of the level’s C-Buffers. Practically, a cache level’s bin range must also be

a power of two, which makes it cheap to bin a tuple (i.e., the division in line 4 of Algorithm 7 can be replaced

by a bitshift).

A new instruction – bininit – configures the number of ways to reserve for C-Buffers at each cache

level. The bininit instruction takes four operands: (1) a cache level identifier (e.g., L1, L2, or LLC in most

systems), (2) number of ways to reserve for C-Buffers, (3) number of unique indices in the data namespace

(e.g., the number of vertices in a graph), and (4) tuple size in bytes. A program executes bininit once for

each cache level. bininit first reserves the specified number of cache ways and then computes the smallest
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power-of-two bin range for which C-Buffers fit in the reserved cache ways. This per-level bin range is stored

in a special register, used later during Binning. Due to the power-of-two requirement on bin ranges, the

C-Buffers may not use all the reserved ways. So the bininit instruction saves the number of ways actually

used by C-Buffers to allow other data to reclaim unused ways.

The number of ways to reserve at a cache level depends on the cache pressure from non-C-Buffer accesses.

For our simulated architecture, we reserve all but one way in each level of cache except the L2 cache. Due to

the presence of an L2 stream prefetcher, we reserve a single way for L2 C-Buffers to retain cache capacity

for prefetched data. Later, we show that HARP’s performance is not very sensitive to the number of ways

reserved for C-Buffers (Figure 5.13b).

5.4.2 An ISA Extension for Binning

HARP eliminates the overhead of extra instructions in PB by extending the ISA with a new instruction –

binupdate. The binupdate instruction replaces all Binning related operations performed in a baseline

software PB execution. The binupdate instruction takes two operands - an index and a value to be used to

update the data stored at the index. For example, the Binning phase in lines 3–5 of Algorithm 7 would be

replaced by a single instruction {binupdate e.src e.dst}. Dedicated hardware in the cache controller

identifies the right C-Buffer for the input tuple and inserts the tuple (e.src, e.dst) into that C-Buffer.

CBuf	0
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CBuf	2

CBuf	3

CBuf	4

CBuf	5

CBuf	6

CBuf	7

CBuf	8

CBuf	9

CBuf	10
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BufID	bits log2(BinRange)

Set	bitsWay	bits
log2(numSets)

Index	ID Update	Val Incoming	Tuple

Figure 5.7: C-Buffer organization within each cache level: Each cache level has a unique bin range that
is used to map an incoming tuple into one of the C-Buffers pinned in cache.

To use HARP, a program first executes the bininit instruction for each cache level and then starts

binning data using binupdate instructions. A binupdate instruction uses the index part of its input tuple

to find a target L1 C-Buffer, as shown in Figure 5.7. Since the bin range is a power-of-two, the lower

log2(bin_range) bits of the index represent an intra-bin-range offset and the remaining bits identify the buffer

ID. Reserving ways allows each C-Buffer to have a unique location within the cache and, hence, the buffer
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ID further breaks down into sets bits and way bits, fully determining the location of the C-Buffer within the

cache4.

5.4.3 Inserting tuples into C-Buffers

HARP collects update tuples in cacheline-sized C-Buffers. When a C-Buffer fills with update tuples, the cache

evicts the C-Buffer line, scattering its tuples into the C-Buffers of the next level of the memory hierarchy.

HARP adds fixed function logic at the cache controller to support inserting an update tuple into a C-Buffer.

Normally, a cache uses the address to identify the bytes to be accessed within a cache line. A binupdate

instruction accesses a cache line differently, because the C-Buffer that the line contains is not byte addressable.

To insert a tuple into a C-Buffer, HARP must determine the tuple’s offset within the C-Buffer line. HARP

maintains offset counters for each C-Buffer to explicitly track the offset of the next tuple within each C-Buffer

line, essentially providing append-only access to C-Buffer lines. To insert a tuple into a C-Buffer, the

controller first reads the offset counter, inserts the tuple at the right offset within the C-Buffer line, and

increments the counter to point to the location for the next incoming tuple. When a C-Buffer cache line fills,

the counter wraps around to zero.

For storing per-C-Buffer offset counters, HARP repurposes existing metadata bits associated with the

cache lines containing C-Buffers. Repurposing these bits is safe because a C-Buffer line exists outside

the shared-memory address space (i.e. C-Buffers only reside in the cache hierarchy and are not present in

memory). HARP can also repurpose the coherence state bits because C-Buffers are core-private (software PB

already duplicates all bins and C-Buffers across threads as shown in Algorithm 7). As an example, a typical

tuple size of 8B (4B for index and value) requires tracking 8 tuples in a typical 64B cache line. For tracking

the 8 tuples within L1 and L2 cache lines, HARP can repurpose 1bit from PLRU replacement, 1bit from dirty

status bit, and 2bits from the MESI coherence status bits for a 3-bit offset counter.

5.4.4 Handling C-Buffer evictions

As the binupdate instruction fills L1 C-Buffers with tuples, eventually a L1 C-Buffer fills and HARP must

evict its tuples to C-Buffers in the next cache level (L2). When a C-Buffer fills up, HARP is responsible for

inserting each tuple in the full butter into the appropriate C-Buffer in the next cache level. After an eviction,

the C-Buffer is empty and can service future incoming tuples.
4For non power-of-two sets (which is atypical), Set = (Bu f ID)%(numSets) and Way = Bu f ID/numSets.
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Figure 5.8: Handling evictions when a C-Buffer fills up: Eviction buffers hide the latency of evicting
tuples.

In a naive implementation, the filled C-Buffer line is evicted and directly sent to a dedicated hardware

unit within the cache controller called the binning engine. The binning engine sequentially extracts tuples

from an evicted C-Buffer cache line and serially issues each tuple to the C-Buffers in the next level of cache.

The process of inserting a tuple into the next cache level’s C-Buffer is exactly the same as a binupdate

instruction inserting tuples into an L1 C-Buffer (Figure 5.7). HARP inserts each evicted tuple into a C-Buffer

in the next cache level using that level’s unique bin range. Figure 5.8 shows how HARP evicts a full C-Buffer.

The cache controller determines when to evict a C-Buffer cache line by monitoring the line’s offset counter,

which is incremented on each tuple insertion. When the counter wraps around, the C-Buffer line is at capacity

and HARP evicts the line.

In the above naive implementation, HARP incurs the full eviction latency to sequentially issue all tuples

from a filled buffer to the C-Buffers in the next level of cache. To hide the latency of C-Buffer evictions,

HARP uses a set of first-in/first-out (FIFO) eviction buffers between cache levels. When a C-Buffer fills,

HARP simply inserts the cache line containing all of its tuples into the eviction buffer. Later, the binning

engine pulls a C-Buffer line from the eviction buffer, extracts tuples from the line, and inserts the tuples

into next level’s C-Buffers. Accounting for the eviction rate from each level of cache and the cycle time to

serially insert all the tuples to the next level of cache, Little’s Law [83] suggests that a 14-entry eviction

buffer between L1 and L2 and single entry eviction buffer between L2 and LLC hides all eviction latency.

However, Little’s law assumes steady state eviction rate and does not account for bursts in evictions, which

may underestimate the eviction buffer size. In a later section, we refine the Little’s Law estimate using a DES

model that accounts for bursts and the model shows that a 32-entry eviction buffer between L1 and L2 fully

hides C-Buffer eviction latency (Figure 5.13a) .
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5.4.5 Additional implementation details

HARP manages the LLC differently from L1 and L2 because the LLC is shared among all the cores and

evictions of LLC C-Buffers interact with bins in main memory.

C-Buffers organization in NUCA caches: As Section 5.2.2 explains, PB creates a per-thread duplicate of

bins and C-Buffers and HARP exploits the duplication by making the C-Buffer in each level private to a core.

For core-private caches, most cache space is reserved for the C-Buffers. In a shared, NUCA LLC that is

physically distributed across cores, HARP evenly divides NUCA cache banks among cores. Each cores’ LLC

C-Buffers use the set of NUCA banks assigned to that core only. Our simulated architecture (Section 5.5.1)

models a typical three-level cache hierarchy where the L1 and L2 caches are core-private and the LLC is a

NUCA cache with a bank associated with each core. For this cache hierarchy, the number of LLC C-Buffers

for each core is bounded by the capacity of the core-local NUCA bank.

Evicting from LLC: Eviction of a full LLC C-Buffer moves buffered updates to a bin in memory, which is

unlike a C-Buffer eviction to the next cache level (Section 5.4.4). The process of evicting a C-Buffer from

the LLC depends on how HARP represents bins in memory. HARP assumes threads’ bin data are stored

sequentially in memory, as in Figure 5.9: for each thread, tuples belonging to a bin are stored contiguously.

Sequential, in-memory bin organization requires pre-computing the number of tuples in each bin (for each

thread). Fortunately, a baseline PB execution already counts tuples per bin (encoded in the BinO f f set array)

as a preprocessing step (Init phase in Table 5.1) to avoid dynamic memory allocation overheads during

Binning. With the above organization, each core can store the base pointer for its thread’s bin data structures

and use per-bin offsets to access each bin. When an LLC C-Buffer fills up, HARP writes the buffered tuples

to the bin data structure at the location pointed by BinO f f set[binID]. After an eviction from LLC, the bin

offset is incremented by the number of tuples in the C-Buffer.

Bin	0 Bin	1 Bin	2 .	.	. 

BinBasePtr BinOffset[1]

T0 T1 TkBinOffset Tuple	Ctr

LLC	C-Buffer	Cacheline

64B CachelineTag	bits Replacement
Metadata	bits

LLC	program	data	Cacheline

BinOffset[2] BinOffset[3]

Bin	3

. . .

Bin	Data	Structure

Figure 5.9: Organization of per-thread bins in memory: BinOffsets are stored in the tag bits of LLC
C-Buffer cachelines.
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Storing the bin offset pointer requires no additional storage. Since the LLC C-Buffers are designed to fit

in a core’s local NUCA bank, the tag bits for the C-Buffer cacheline are unnecessary and can be repurposed to

store bin offsets (BinO f f set[binID]) as shown in Figure 5.9. Before Binning, HARP initializes the starting

offsets for each LLC C-Buffer (in every NUCA bank) in the C-Buffer’s tag entry using a new ISA instruction

that takes a buffer ID and starting bin offset as operand. At a LLC C-Buffer eviction, the contents of the

LLC C-Buffer line are written to the memory address computed using the bin offset in line’s tag entry

(BinBasePtr+BinO f f set[binID]). To avoid the need for address translation, we assume system support for

ensuring matching virtual and physical addresses for important data structures (eg. the bin data structure) as

proposed in prior work [81, 130]. After writing the contents of the full LLC C-Buffer to an in-memory bin,

the bin offset value in the cacheline’s tag is incremented by the number of tuples in the C-Buffer using fixed

function logic and the C-Buffer’s offset counters are reset to starting receiving tuples again.

Flushing the Cache After Binning: In HARP, all tuples are inserted by a binupdate instruction into L1

C-Buffers, later evicted to L2 and LLC C-Buffers, and eventually written to a bin in main memory. When

Binning ends, some tuples may still be resident in a C-Buffer in cache. Before starting the next phase of PB

(Accumulate), HARP must ensure that all remaining tuples in cache end up in in-memory bins. We add a

binflush ISA instruction that signals the end of Binning and causes each cache level’s controller to serially

walk all C-Buffer cache lines, forcing an eviction if the line is non-empty. In each core, binflush starts

with L1, proceeds to L2 and, finishes by writing the residual tuples in the local NUCA bank to memory.

The eviction process initiated by binflush proceeds as described in Sections 5.4.4 and 5.4.5, with the

difference that the eviction buffers, binning engine, and bin offsets update logic must handle partially filled

C-Buffers. The number of tuples remaining in a C-Buffer are identified with the help of per-C-Buffer offset

counters (Figures 5.8,5.9). In addition to being used at the end of Binning, binflush is also invoked in case

a page containing per-thread bin data structures is swapped out of memory. Such premature invocations of

binflush can be avoided by locking critical pages in memory (e.g., using mlock() in Linux).

Handling virtualization: HARP extends a commodity multicore processor to accelerate PB, requiring

its extensions to support virtualization for OS preemption and context switching. We rely on per-process,

way-partitioning (as in Intel CAT [7]) to reserve space for per-level C-Buffers across the cache hierarchy.

Using static cache partitioning for the HARP process ensures that each level’s C-Buffers are pinned for the

duration of the Binning phase of PB. However, if the HARP process is preempted during Binning, then

other processes scheduled to run intermediately can evict C-Buffer cache lines. Evictions triggered by other
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processes may lead to transfer of partially-filled C-Buffer cache lines which reduces the efficiency of data

transfer. Fortunately, HARP’s architecture extensions significantly optimize Binning phase latency, allowing

Binning to complete with the minimum number of OS preemptions. Later, we show that HARP’s Binning

phases is not sensitive to the OS scheduling quantum (Figure 5.13c)

Need for Static Cache Partitioning: The HARP architecture described to this point assumes static cache

partitioning at each cache level to reserve space for C-Buffers and ensure that that C-Buffer accesses never

miss. HARP can also work in architectures lacking support for static cache partitioning. However, without

static cache partitioning, locality of C-Buffer cache lines is defined by the underlying cache replacement

policy and pressure from other data accesses during the Binning phase. Fortunately, all other data accesses

besides C-Buffers are streaming accesses (e.g., CSR and auxData in Figure 5.3) and do not impose cache

pressure on C-Buffer cache lines. Evaluations using a custom cache simulator revealed that the baseline

replacement policy (PLRU in L1/L2 and DRRIP in LLC) is able to provide a C-Buffer miss rate of <1% in

the absence of static cache partitioning.

Hardware overheads of HARP: HARP repurposes cache line metadata whenever possible (Figure 5.9) and

the only storage overhead incurred by HARP are the eviction buffers used to hide C-Buffer eviction latency.

However, the small eviction buffers between cache levels amount for less than 7% of an L1 cache area [131].

Finally, the binning engine and fixed function logic to update per-C-Buffer counters incur low complexity

because they perform simple integer arithmetic.

5.5 Performance Improvements with HARP

HARP provides significant performance and locality improvements across a diverse set of applications. We

provide a detailed quantitative explanation for HARP’s speedups and compare HARP against a state-of-the-art

Propagation Blocking optimization [130]. Before presenting our performance results, we briefly describe our

evaluation setup.

5.5.1 Evaluation Setup

We evaluated HARP across applications spanning graph processing, pre-processing, integer sort, and sparse

linear algebra using an architecture simulator.
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Real System: Experiments in Sections 5.1, 5.2, and 5.5.5 were run on an Intel Xeon processor (14 cores,

35MB LLC, 32GB DRAM) with hyperthreading and “turbo boost” DVFS disabled. We used LIKWID [162]

to collect performance counters.

Simulator: We use Sniper [38] to evaluate HARP. Table 5.2 shows the architecture parameters we

simulated, with cache timing parameters collected from CACTI [131]. We made several modifications to

Sniper. For PB, we added support for non-temporal stores which are required for efficient Binning [28, 153].

For HARP, we model the interaction of the binupdate instruction with the Out-of-Order engine. We ensure

that a binupdate only retires when it reaches the head of the ROB because a binupdate writes the data

caches (i.e., like a store). Since no instruction depends on binupdate, we do not need to add binupdate

to the store queue for memory disambiguation. Stores require two ports to issue (address generation and

data), but the binupdate does not need the address generation port because the L1 C-Buffers are directly

addressed based on operand value. We also use a custom Pin-based [119] cache simulator for a subset of our

evaluations (Section 5.5.4). The cache simulator models the cache hierarchy in Table 5.2 and we validated

our cache simulator against Sniper – LLC statistics from our simulator are within 5% of Sniper).

Cores 16 OoO-cores, 2.66GHz, 4-wide issue, 128-entry ROB, 48-entry Load Queue, 32-entry Store
Queue

L1(D/I) 32KB, 8-way set associative, Bit-PLRU policy, Load-to-use = 3 cycles
L2 256KB, 8-way set associative, Bit-PLRU policy, Load-to-use = 8 cycles
LLC 2MB/core, 16-way set associative, DRRIP replacement policy [86], Load-to-use = 21 cycles (local

NUCA bank)
NoC 4x4 mesh, 2 cycles hop-latency, 64 bits/cycle link B/W, MESI coherence
DRAM 80ns access latency

Table 5.2: Simulation parameters

Workloads: We evaluate HARP across workloads spanning multiple domains. Degree-Counting

and Neighbor-Populate are the dominant phases of Edgelist-to-CSR conversion, an important graph

preprocessing step that prior work has shown can be as expensive as the downstream graph analytics

kernel [123, 149]. Pagerank is a popular graph analytics kernel representative of graph applications where

all vertices are processed every iteration. Our Edgelist-to-CSR conversion and Pagerank implementations

are from the GAP [27] benchmark suite. Radii from the Ligra [154] benchmark suite estimates a graph’s

diameter by performing multi-source BFS and is representative of graph applications which only process

a subset of the vertices every iteration. In addition to graph (pre)processing workloads, we also evaluate

Integer Sorting. We use __gnu_parallel::sort() as our baseline sort implementation because we
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found it to be up to 14% faster (2.7% on average) compared NAS benchmark suite’s [15] integer sort

implementation. The PB and HARP versions optimize a parallel counting sort implementation [45]. We

also evaluate HARP across four sparse linear algebra kernels – SpMV from the HPCG benchmark [54], and

PINV, Transpose, and SymPerm from the SuiteSparse benchmark suite [49]. PINV computes the inverse

mapping for a given permutation of a matrix rows/columns. Transpose constructs the sparse representation

of a matrix’s transpose. SymPerm permutes the upper triangular portion of a matrix and is a subroutine in

Cholesky factorization. To reduce simulation time, we simulate a single iteration of Pagerank because of its

constant runtime across iterations and we use iteration sampling [128, 130] to simulate every second pull

iteration for Radii.

Our workloads have tuple sizes of 4B (Degree-Counting and Integer Sort), 8B (Neighbor-Populate,

Pagerank), and 16B for the rest. PB (and HARP) require an application to perform irregular update and

streaming reads which required slight modifications for Pagerank, Radii, and SpMV (specifically making

the propagation blocking versions process the transpose representation of the input graph/matrix). For the PB

runs, we use the original source code which we received from the authors [28] and we simulated multiple bin

ranges for PB, selecting the best bin range for each workload and input graph pair.

Inputs: We evaluate the graph (pre)processing workloads across a diverse set of input graphs (the graphs

cover power-law, uniform normal, and bounded degree distributions). For Integer Sort, we sort 256

million randomly generated keys with varying values of the maximum key value. We use sparse matrices

representative of simulation and optimization problems for evaluating the sparse linear algebra kernels. All

our inputs cause the working set size to far exceed the LLC capacity. We do not simulate Radii on the EURO

graph because Radii never executes a pull iteration.

GRAPHS DBP [103] PLD [112] KRON [27] URND [27] EURO [50]
# Vertices 18.26M 42.89M 33.55M 33.55M 50.91M
# Edges 136.54M 623.06M 133.52M 134.22M 108.11M

MATRICES HBUBL [50] HTRACE [50] KMER [50] DELAUNAY [50]
# Rows/Columns 21.12M 16M 67.72 16.78M
# NNZs 63.58 48M 138.78M 100.66M

Table 5.3: Input Graphs and Matrices
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Figure 5.10: Speedups with HARP: HARP provides significant performance gains over PB-SW (and PB-
SW-IDEAL) across a broad set of applications. (* indicates that the application performs non-commutative
updates)

5.5.2 Speedups with HARP

The main result of this evaluation is that HARP consistently improves the performance of PB. HARP improves

PB performance in two ways – by eliminating the need to compromise with a sub-optimal number of bins

and by eliminating the instruction overheads associated with Binning. To isolate the contributions from each

optimization, Figure 5.10 compares speedups from a baseline software-based PB (PB-SW), PB-SW-Ideal

(an idealized PB execution combining Binning with a small number of bins and Accumulate with a large

number of bins), and HARP. PB is an effective software locality optimization offering a mean speedup of

1.81x over the baseline. Eliminating the compromise on the bin range parameter (PB-SW-IDEAL) provides

an additional mean speedup of 1.2x over PB. HARP combines the benefits of using the optimal number of

bins for Accumulate with the efficiency improvements from offloading C-Buffer management to hardware,

allowing HARP to gain an additional mean speedups of 1.45x over PB-SW-IDEAL. In summary, HARP

provides a mean speedups of 1.74x over PB and 3.16x over the baseline. These HARP speedup numbers

include the cost of initializing LLC C-Buffers tags with starting bin offset values and flushing every level’s

C-Buffers after Binning (Section 5.4.5). The numbers in Figure 5.10 also account for the initialization cost of

computing per-thread bin sizes in both HARP and PB. The results for PINV and SymPerm need additional

explanations. PINV was the only application where the best Accumulate performance did not correspond with

a large number of bins (likely due to parallelism artifacts overshadowing the locality benefits). Consequently,

PB-SW-IDEAL underperforms PB-SW for PINV and HARP offers limited benefits over PB-SW. We ran a
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version of HARP using a medium number of LLC C-Buffers (which offers the best Accumulate performance

for PINV) and observed that HARP’s mean performance improvement increased to 2.4x over the baseline and

1.94x over SW-PB. SymPerm achieves limited benefit from HARP because it only processes coordinates in the

upper triangular portion of the matrix, limiting the headroom for spatial and temporal locality optimization.

DC NP PR RD IS SPMV PINV TR SP
Applications

0
2
4
6
8

10
12

Sp
ee

du
p 16x 17x 36x

Binning Phase

DC NP PR RD IS SPMV PINV TR SP
Applications

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Sp
ee

du
p

Accumulate Phase

PB-SW
HARP

Figure 5.11: HARP speedup across both phases of PB: HARP uses a large number of bins naturally
optimizing Accumulate and uses architecture support to optimize Binning.

Looking at the speedup for each phase of PB in Figure 5.11 helps understand HARP’s performance

benefit. A HARP execution optimizes both phases of PB. Compared to software-PB which much compromise

with a sub-optimal number of bins, HARP optimizes the Accumulate phase by using a large number of

bins (allowing irregular updates to operate from faster caches). The Binning phase sees even more speedup,

ranging from 2.2–32x owing to elimination of extra instructions and decoupling Binning performance from

the number of in-memory bins through hierarchical buffering. The next section further characterizes HARP’s

improvements to Binning.

5.5.3 Characterizing HARP’s Binning speedups

In this section, we explain the source of HARP’s Binning speedups – eliminating instructions and control

overheads associated with C-Buffer management. We also show that HARP’s Binning performance is robust

to different architecture and system parameters.

Improvements from eliminating instructions: HARP’s binupdate instruction replaces all Binning in-

structions executed in software by PB. Figure 5.12 (top) shows HARP’s 2-5.5× reduction in total instructions

executed (averaged across inputs) compared to software PB. HARP also reduces PB’s control overheads dur-
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Figure 5.12: Efficiency gains from eliminating instruction overhead of binning: The binupdate instruc-
tion in HARP enables an OoO core to exploit more ILP.

ing Binning. PB manages C-Buffers in software: after every tuple insertion the core must check if a C-Buffer

is full. HARP instead manages C-Buffers using dedicated hardware in the cache controller, reducing the rate

of branch mispredictions, as Figure 5.12 (bottom) shows. HARP eliminates all branch misses associated

with managing C-Buffers in software, often achieving near-zero branch misprediction rates as the baseline

versions5. By reducing the instruction and control overheads of Binning, HARP enables an Out-of-Order

processor to better exploit Instruction Level Parallelism (ILP) and we observe that the Instructions-per-Cycle

(IPC) of the Binning phase improves from 0.71 in PB-SW to 1.55 in HARP.

Sensitivity to eviction buffer sizes: HARP uses eviction buffers to push C-Buffer eviction latencies off

the critical path. We built a Discrete Event Simulation (DES) model of HARP to estimate the eviction

buffer sizes required to handle input-specific eviction bursts. The DES model consumes a trace of update

tuples and reports the fraction of time stalled on a full eviction buffer. Figure 5.13a reports the fraction of

Neighbor-Populate execution stalled for different sizes of eviction buffer between L1 and L2. The data

show that a 32-entry L1 eviction buffer hides eviction latency for all inputs. Little’s Law estimates that a

single-entry buffer between L2 and LLC suffices because L2 evictions are infrequent. Overprovisioning the

buffer to 8 entries incurs a modest cost and should suffice to handle rare bursts of L2 evictions [83].

Sensitivity to ways reserved for C-Buffers: HARP uses way partitioning to reserve space for C-Buffers at

each cache level, reducing the effective cache capacity for non-C-Buffer data during Binning. We measured

5Pagerank and Radii still incur branch misses because accessing a CSR, especially of power-law graphs, incurs control
instructions to check if all the neighbors of a vertex have been processed. SymPerm incurs branch misses because it frequently needs
to check if a non-zero coordinate belongs to the upper triangular matrix
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Figure 5.13: Sensitivity of Binning performance in HARP

the sensitivity of HARP’s Binning performance for different workloads as the number of ways reserved for

C-Buffers is varied (Figure 5.13b). The result shows robustness of HARP’s performance (variation≤10%) to

the L1 and LLC cache ways reserved for C-Buffers because all non-C-Buffer accesses during Binning are

streaming and, hence, do not require significant capacity. HARP’s performance is more sensitive to the L2

cache ways reserved for C-Buffers because of the presence of a L2 stream prefetcher which gainfully uses the

additional cache capacity to prefetch streaming data. Therefore, our default HARP configuration reserves a

maximum of all but one way in the L1 and LLC and a single way in the L2 for C-Buffers.

Sensitivity to context switches: HARP uses static cache partitioning to pin the C-Buffers in each cache

level for the entirety of the Binning phase. However, on a context switch, other processes may evict (possibly

partially-filled) C-Buffer cache lines. Evicting partially-filled C-Buffer cache lines at the LLC leads to

DRAM bandwidth wastage because main memory is always accessed at the cache line granularity (64B).

To measure the worst-case bandwidth wastage, we built a cache simulator that models eviction of all the
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LLC C-Buffers on every context switch. Figure 5.13c shows the reduction in bandwidth wastage as we vary

the linux scheduling quantum for the Neighbor-Populate application. The worst-case bandwidth wastage

is less than 5% even when the scheduling quantum is 1/100th the default value used in linux [3]. HARP’s

architecture extensions provides significant speedups to the Binning phase (8.3x on average in Figure 5.11)

which reduces the number of context switches (and the associated bandwidth wastage).

5.5.4 Specialization for Commutative Updates

The HARP design described up to this point is application-agnostic and is primarily a latency optimization

(choosing an optimal number of bins for Accumulate performance and using architecture support to accelerate

Binning). Applications with commutative updates present an opportunity to reduce main memory traffic by

coalescing updates destined to the same index (reducing the number of update tuples read/written to bins).

For commutative applications, PHI [130] proposed adding simple reduction units (ALU) at private caches

and an atomic reduction unit at the shared LLC to allow coalescing updates within each level of the cache

hierarchy. HARP can also be specialized with similar reduction units to reduce main memory traffic for

commutative applications. Instead of simply appending at the end of a C-Buffer, HARP could scan all the

tuples present in a C-Buffer, checking to see if a tuple with the update’s index already exists. If a tuple with

that index exists, the new update could be coalesced with the existing tuple using a local reduction unit.

Otherwise, HARP appends the new update’s tuple at the end of the C-Buffer as usual. To reduce the changes

required to HARP, we propose a commutativity-specialized version of HARP (called HARP-COMM) that

performs update coalescing as described above but only at the LLC (where the coalescing opportunity is

likely to be the largest). Using an atomic LLC reduction unit, as in PHI, allows HARP-COMM to share LLC

C-Buffers among cores, increasing the total number of LLC C-Buffers.

We compare PHI, HARP, and HARP-COMM against the baseline PB (PB-SW) using our custom

cache simulator. We implement PHI’s optimizations (hierarchical buffering/coalescing and selective update

batching) as described in the paper [130] and we model an aggressive version of PHI that incurs zero

overheads for managing PB data structures. Figure 5.14 shows the reduction in DRAM traffic and L1

cache misses (across Binning and Accumulate phases) under PB-SW, PHI, HARP, and HARP-COMM for

the Count-Degrees and Neighbor-Populate applications. The result reveals three interesting trends.

First, PHI and HARP-COMM are inapplicable for the non-commutative applications because they would
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Figure 5.14: Comparisons against PHI: PHI and HARP-COMM are inapplicable for applications with
non-commutative updates

violate correctness (Section 5.2.2). For non-commutative applications (Neighbor-Populate, Integer

Sort, Transpose, PINV, SymPerm), HARP is the only viable hardware PB optimization. Second, for the

commutative Count-Degrees application, PHI is able to provide greater DRAM traffic reduction than

HARP by hierarchically coalescing updates at each cache level (Figure 5.14a). Across all input graphs,

HARP-COMM achieves the same traffic reductions as PHI in spite of only coalescing updates in LLC

C-Buffers because a majority of updates in PHI are also coalesced at the LLC (97% on average). However,
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PHI’s (and HARP-COMM’s) traffic reductions are tied to highly skewed input graphs and input graphs with

lower temporal reuse in caches (URND, EURO, UK2005, HBUBL) see lesser relative benefit from PHI

compared to HARP. The result shows that PHI’s improvements are tied to the amount of temporal locality

that can be mined from caches and applications with no temporal reuse (e.g. PINV) are unlikely to receive

benefits from PHI. Third, HARP consistently reduces L1 caches misses compared to PHI (Figure 5.14b).

HARP minimizes L1 misses by choosing the optimal number of bins for the Accumulate phase whereas

PHI’s L1 miss reductions are a product of coalescing updates and reducing the number of tuples to be read

from bins. For graphs with low coalescing opportunity (URND, EURO, UK2005, HBUBL), the Accumulate

phase in PHI suffers from choosing a sub-optimal number of bins (as in PB-SW) and provides limited L1

miss reduction over PB-SW.

In summary, HARP is a more general PB optimization compared to PHI because it applies to both

commutative and non-commutative applications. Additionally, with simple modifications, HARP can be

specialized for commutative updates (HARP-COMM) to combine the benefits of update coalescing (to

achieve similar traffic reductions as PHI) and choosing the optimal number of bins for the Accumulate phase

(improving Accumulate L1 locality compared to PHI).

5.5.5 Rationale for Using PB Over Graph Tiling

In this work, we focused on developing architecture support for extending the performance gains of software

PB. Another popular software-based cache locality optimization is graph-tiling [149, 159, 175, 176, 183]

where an input graph is divided into "sub-graphs" such that the irregular accesses performed while processing

each sub-graph can fit within the LLC. To understand the difference between the PB and Tiling, we compare

PB to CSR-Segmenting 6 [176] (a state-of-the-art 1D tiling solution that has been shown to outperform prior

approaches like GridGraph [183] and X-Stream [149]). Figure 5.15 shows the reduction in execution time

achieved by CSR-Segmenting (Tiling) and PB for the Pagerank application run until convergence. The

shaded portion in the bars represents the initialization overheads of Tiling (constructing the per-tile CSRs)

and PB (allocating memory for bins). Ignoring overheads, PB provides a mean speedup of 1.35x compared to

1.27x from Tiling (PB is particularly effective for sparser inputs as observed in prior work [28]). Additionally,

the initialization overheads of PB are significantly lower compared to Tiling allowing PB to offer a higher net

6We use the GraphIt [178] implementation of CSR-Segmenting
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performance improvement. Therefore, we selected PB as the basis for our architecture extensions because

PB is able to provide speedups even after accounting for overheads.
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Figure 5.15: Comparing PB to Tiling: Ignoring overheads, PB offers competitive performance to Tiling.
PB also incurs significantly lower overheads compared to Tiling.

5.6 Related Work

There are four categories of work related to HARP: commutative PB optimizations general PB optimizations,

graph tiling, and graph processing architectures.

PB Optimizations for commutative updates: Prior work specializes PB for applications with commutative

updates. The most related work to HARP is PHI [130], which optimizes applications with irregular commu-

tative updates (Section 5.5.4). Milk [100] is a compiler-based optimization for PB that simplifies writing PB

versions of applications. Using pragmas, programmers specify index and update values to be binned and an

operator for combining updates. Milk allows combining commutative updates to the same index. HARP

could be a target for the Milk compiler, extending HARP’s benefits to new applications. GraFBoost [90]

exploits commutativity in PB for out-of-core graph analytics while HARP targets in-memory analytics.

Compared to these works, HARP is a more general PB optimization because it supports non-commutative

updates and can be specialized for commutative updates (Section 5.5.4).

General PB optimizations: Prior work addressed inefficiencies of software PB. PCP [107] and GPOP [106]

reduce memory traffic in Binning with new graph representations but they incur higher preprocessing

overheads compared to PB. Unfortunately, they increase preprocessing overheads compared to PB limiting

their applicability in scenarios with tight latency requirements. Ozdal et al. [138] propose algorithmic changes

to PB that allow running Binning and Accumulate concurrently and reduce PB’s memory overhead. To

reduce the memory requirements of PB, Ozdal et al. propose algorithmic changes to PB allowing Binning

and Accumulate to run concurrently. HARP could support variations of PB using extensions similar to
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Section 5.5.4. Prior works [153, 180] have highlighted the sensitivity of radix partitioning to the number

of partitions (i.e. bins in PB) and demonstrated unexpected performance cliffs. In contrast to PB, HARP

eliminates the need to tune for the bin range parameter by sizing the bin ranges as per each level’s capacity.

Tiling optimizations: Various tiling optimizations exist for graph analytics. Section 5.5.5 compared PB to

graph tiling [149, 159, 175, 176, 183]. Tiling incurs pre-processing overheads (e.g., creating per-tile CSR)

but has low dynamic overheads. In contrast, PB has low pre-processing overhead but suffers from dynamic

overheads for Binning. HARP shares PB’s low pre-processing cost and optimizes away PB’s dynamic

overhead using architecture support.

Architectures for graph processing: HARP follows prior work that propose architecture support for

common graph sub-computations. Minnow [171] provides architecture support for efficient worklist man-

agement [145]. HATS [128] introduces custom hardware for online vertex scheduling to improve locality.

OMEGA [9] tailors scratchpad-based memories to optimize graph analytics on power-law inputs. Graph

processing accelerators [75, 140] optimize common framework operations. Similar to these works, HARP

provides architecture support for Binning to optimize PB.

5.7 Discussion

This chapter focused on optimizing Propagation Blocking (PB), a versatile software-based cache locality

optimization. HARP provides architecture support to eliminate the lingering sources of inefficiencies

in a PB execution and extends PB’s performance benefits across a broad range of workloads (including

graph analytics). Beyond offering high speedups for graph analytics applications (Pagerank and Radii in

Figure 5.10), HARP can also provide end-to-end graph analytics performance because it applies to both

graph processing and pre-processing. To illustrate this point, we compare the cost of executing the Pagerank

application directly on an Edgelist 7 compared to Pagerank execution on a CSR (including the cost of

converting from Edgelist to CSR). Figure 5.16 shows the benefits of constructing the CSR as well as the

speedups achieved with accelerating graph processing and pre-processing with PB and HARP. The data

show that even after including the pre-processing cost of constructing a CSR from the Edgelist, running

Pagerank on a CSR yields a mean speedup of 1.8x over hrunning Pagerank directly on an Edgelist. PB

and HARP apply to both the pre-processing and graph processing phases, allowing HARP to increase the

7Most public repositories store graphs in the Edgelist (COO) format [50, 103, 115].
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mean end-to-end speedup over Edgelist-based Pagerank to 4.2x. Besides CSR pre-processing, PB (and

HARP) should also be able to optimize the construction of common representations such as DCSR [63] and

CSF [155] due to the similarity in the access patterns of constructing these sparse data structures from a list

of coordinates (COO).
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Figure 5.16: End to end graph analytics speedups with HARP: HARP applies to both graph pre-processing
(EdgeList-to-CSR) and graph processing (PageRank)

In conclusion, by targeting the versatile PB optimization (whose sole requirement is that an application

perform irregular updates), HARP is able to improve cache locality for a broad range of applications beyond

just graph analytics workloads.



Chapter 6

Conclusions

In this final chapter, we identify the common recurring themes that span across the works proposed in this

thesis (Chapters 2 to 5). We also identify some future research directions to generalize the ideas developed in

this thesis to broader contexts. Finally, we conclude with some remarks on how the different works presented

in this thesis solve the fundamental problem of in-memory graph analytics – poor cache locality.

6.1 Cross-cutting Themes

Two themes consistently appear across all our proposed works – 1) the importance of considering preprocess-

ing overheads and 2) high performance sensitivity to input graphs.

6.1.1 Importance of Considering Preprocessing Overheads

Preprocessing costs have played a significant role in every idea proposed in this thesis. In Chapter 2, we

saw that while sophisticated graph reordering techniques provide high speedups they also incur extreme

overheads (Table 2.1); limiting the viability of such reordering techniques. Even among lightweight reordering

techniques, our characterization revealed that once we include preprocessing (i.e. reordering) costs it is

not obvious whether graph reordering will always provide a net benefit (Figure 2.2). In Chapter 3, we saw

that the most compelling argument for using RADAR was that it was able to eliminate atomics without

impacting work-efficiency (in contrast to prior optimizations). Besides the work-efficiency benefits, the

low preprocessing overheads of RADAR (having to construct only the CSR and not the CSR and CSC) is

another major factor that allows RADAR to provide a higher net speedup compared to the Push-Pull direction

116
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switching optimization (Figure 3.7). In Chapter 4, we saw that the Rereference Matrix allowed P-OPT to

perform near-optimal cache replacement and significantly outperform existing state-of-the-art replacement

policies. It was crucially important for the Rereference Matrix construction cost to be very low (Table 4.4)

because otherwise the overhead of building the Rereference Matrix could have completely overshadowed

the locality improvements from P-OPT (Figure 4.10). Finally, in Chapter 5, we saw that HARP applies to

graph analytics workloads and graph preprocessing tasks. We included graph preprocessing as one of the

target workloads for HARP because prior work has showed that even a basic preprocessing task such as

constructing a CSR from an Edgelist accounts for 48-97% of the total execution time [19]. Targeting graph

preprocessing (in addition to graph processing) allowed HARP to improve end-to-end performance of graph

analytics (Figure 5.16).

The main takeaway from all the above projects is that it is always important to consider the preprocessing

overheads of any graph (locality) optimization. The peril of ignoring preprocessing overheads is that we may

overestimate the benefits of any given optimization (or, even worse, refer to a system that provides a net

slowdown as an optimization).

6.1.2 Performance Sensitivity to Input Graphs

The second major theme across our proposed works is the high performance sensitivity to different input

graphs. Chapters 2 and 3 are entirely motivated by the unique performance trends of graph analytics on power-

law graphs. These chapters demonstrated that we can build useful software cache locality optimizations

by leveraging a common structural property of input graphs. Sensitivity to input graphs also appears in

our architectural optimizations (Chapters 4 and 5). Even though the P-OPT and HARP optimizations are

input-graph agnostic (i.e. the benefits are not restricted to a specific type of input graphs), the magnitude

of speedups offered by these optimizations does depend on the input graph to a small extent. Having a

better understanding of how properties of input graphs affect performance offers a few advantages (even

for input-agnostic graph optimizations). First, it can help set our expectations about the extent of benefits

received from any given locality optimization (for example, bounded-degree graphs such as road networks

have a low average degree and, hence, present low cache reuse opportunity. In contrast, power-law graphs

have significant cache reuse corresponding to the hub vertices). Second, in the accelerator era, having

an understanding of how properties of the input graph affect performance can guide the design of new
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tiling mechanisms or reordering schemes to improve the efficiency of graph analytics/sparse linear algebra

accelerators for common inputs [172, 179].

6.2 Future Research Directions

We identify two future research directions for extending the ideas proposed in this thesis to new applications,

inputs, and architectures.

6.2.1 Expanding the Scope of Graph Reordering

Chapter 2 showed how graph reordering is effective at reducing Last Level Cache and TLB misses (Figure 2.5).

Chapter 3 showed that graph reordering (when combined with data duplication) eliminates expensive atomic

updates, providing the best scalability with RADAR (Figure 3.10). To summarize the ideas presented in

these chapters, we leveraged input graphs with power-law degree distribution to improve cache locality

and multi-core scalability. This leads to the question – can we expand the scope of graph reordering to

incorporate a broader set of graphs and target a broader set of architectural optimizations?

On the inputs front, we have already seen an example of a graph reordering technique that leverages

structural properties besides power-law degree distribution – Rabbit Ordering exploits the community

structure present in some graphs (Section 2.2.1). Prior work has also identified specific reordering techniques

for bounded-degree graphs such as road-networks [92]. Going forward, as new graph analytics applications

emerge they will bring their own set of input graphs with unique structural properties (for example, De

Bruijn graphs in genomics [66]). Therefore, a valuable research contribution would be to catalog the

different types of degree distributions observed in typical, real-world input graphs and compile a menu

of reordering techniques that is best suited for each degree distribution. The knowledge of how different

structural properties of input graphs affect performance can lead to a more aggressive version of selective

graph reordering, where instead of choosing whether or not to apply reordering (as in Chapter 2) we can

choose the best reordering technique for any given input graph.

On the architectural optimizations front, we can expand the scope of graph reordering techniques to go

beyond improving data reuse in on-chip caches and improving parallel scalability. For example, prior work

has observed that partitioning a graph can be viewed as a form of graph reordering [164] and partitioning

schemes have been shown to significantly reduce network traffic in distributed graph analytics [69]. In
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increasingly NUMA architectures (for example, sockets in multi-core CPUs or multi-chip modules in

GPUs [14]), coming up with good partitions (through reordering) can reduce expensive on-chip network

traffic. Additionally, graph reordering could also target other goals such as ordering vertices into blocks so as

to improve SIMD/SIMT efficiency.

Besides inputs and architectural optimizations, the design space of graph reordering techniques can

also include the dimension of reordering overhead. As far as reordering overheads are concerned it is the

downstream graph analytics application that ultimately decides whether the overhead of any given reordering

technique is feasible or not. Therefore, there is value in developing a broad range of reordering techniques,

each providing varying levels of data reuse and reordering overheads. Another research direction would be to

investigate architecture support to reduce reordering overheads (as illustrated with HARP in Chapter 5). With

sufficient architecture support, previously inapplicable, sophisticated reordering techniques may suddenly

become viable in many more scenarios. In summary, the interplay of structural properties of input graphs and

architectural optimizations coupled with constraints on reordering overhead opens up a rich design space for

developing future reordering techniques.

6.2.2 Transparent Scaling of GPU-based Graph Analytics

With a higher number of cores and higher memory bandwidth, GPU-based graph analytics can provide

significant speedups compared to graph analytics on multi-core CPUs [39]. However, a fundamental

limitation of GPU-based graph analytics is that GPUs have smaller main memory capacity relative to large

multi-core processors which limits the size of the largest graph that can be analyzed using a single GPU.

The most common solution to process large graphs using GPUs is to rely on distributed, multi-GPU graph

analytics [87, 89, 141] where the input graph is partitioned across multiple GPUs. While effective at scaling

to large input graphs, multi-GPU graph analytics requires graph partitioning which can impose preprocessing

overheads and complicate the programming model.

To avoid the preprocessing and programmability overheads of multi-GPU graph analytics, graph analytics

frameworks could use Unified Virtual Memory (UVM) where the host (CPU) and GPU device have a shared

view of memory [64]. With UVM, the hardware is responsible for transparently move pages between the

larger CPU memory and the smaller GPU memory on demand; alleviating the burden of data migration

from the programmer. In theory, UVM should trivially allow analyzing large input graphs using just a single
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GPU. However, in practise, fine-grained irregular memory accesses (as is typical in graph analytics) leads to

inefficient page migration and causes systems using UVM to incur a huge performance penalty [182]. Due

to the high overheads of UVM for irregular memory accesses, (to the best of our knowledge) no existing

GPU-based graph analytics system relies UVM to scale to larger input graphs. Therefore, we have an

opportunity to improve UVM performance for irregular memory accesses so as to allow GPU graph analytics

to transparently scale to larger input graphs.

The primary reason for poor performance of UVM on irregular memory accesses is the poor locality of

pages that are migrated into the GPU memory. UVM typically uses a simple LRU replacement policy to

decide which pages need to be evicted back to the CPU memory because that is sufficient for applications

with more regular access patterns [8, 64]. However, as we saw in Chapter 4, LRU is a bad fit for irregular

memory accesses. Fortunately, the UVM context is very similar to the system that P-OPT was designed

for – the GPU memory is equivalent to the "LLC", the CPU memory is equivalent to the "DRAM", and

the page size is equivalent to "cache line size" for the Rereference Matrix. Given the similarity between

the two scenarios, a modified version of P-OPT should be able maximize locality of pages in the GPU

memory by making near-optimal replacement decisions. As part of future work, we plan to evaluate such

a P-OPT-equipped UVM system and compare its effectiveness relative to distributed, multi-GPU graph

analytics.

6.3 Final Remarks

At the beginning of this thesis, we highlighted the poor cache locality of graph analytics workloads caused by

irregular memory accesses. The main insight of this thesis was that the different sources of irregularity in

graph analytics workloads contain valuable information that can be used to design cache locality optimizations.

As proof, we developed software and hardware based cache locality optimizations by leveraging common

structural properties of input graphs (Chapters 2 and 3), popular graph representations (Chapter 4) and

application access patterns (Chapter 5). The solutions proposed in this thesis highlight the abundant structure

within the irregular memory accesses in graph analytics workloads and, more importantly, showcase the

benefits of carefully analyzing common structural properties and representations of inputs while designing

graph locality optimizations.
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