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PROBLEM – SUBOPTIMAL SPARSE LINEAR ALGEBRA PERFORMANCE
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PROBLEM – SUBOPTIMAL SPARSE LINEAR ALGEBRA PERFORMANCE
Characterization on NVIDIA A6000 GPU

*Subset of matrices evaluated

0

1

2

3

4

5

TWITTER HYPERLINK DBPEDIA LIVEJOURNAL KMER

DRAM Traffic (Normalized to Algo. Min)

Matrices* 

Lower is better

Y
(Dense Vector)

A
(Sparse Matrix)

X
(Dense Vector)

N

1

N

1

N

N

Algo

Min

L2 

Cache
DRAM

SM

SM

L1 

Cache

L1 

Cache

Y, A, X

Sparse Matrix Vector Multiplication (SpMV)



5

Algo

Min

PROBLEM – SUBOPTIMAL SPARSE LINEAR ALGEBRA PERFORMANCE
Characterization on NVIDIA A6000 GPU

0

1

2

3

4

5

TWITTER HYPERLINK DBPEDIA LIVEJOURNAL KMER

DRAM Traffic (Normalized to Algo. Min)

Matrices* 

3.97x

3.32x

1.95x
1.82x 1.77x

Lower is better

L2 

Cache
DRAM

SM

SM

L1 

Cache

L1 

Cache

Y, A, X

*Subset of matrices evaluated

Y
(Dense Vector)

A
(Sparse Matrix)

X
(Dense Vector)

N

1

N

1

N

N

Sparse Matrix Vector Multiplication (SpMV)



6

SOURCE OF POOR PERFORMANCE -- IRREGULARITY
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SOURCE OF POOR PERFORMANCE -- IRREGULARITY
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Compressed Representations of sparse matrices lead 

to fine-grained, irregular accesses to Input Vector (X)
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IMPROVING REGULARITY WITH MATRIX REORDERING
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IMPROVING REGULARITY WITH MATRIX REORDERING
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Many real-world networks 
exhibit community structure: 

• Social Networks
• Web Crawls
• Biological Networks
• Knowledge graphs
• …

IMPROVING REGULARITY WITH MATRIX REORDERING
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Relabel Matrix 
Rows and Cols

IMPROVING REGULARITY WITH MATRIX REORDERING
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Relabel Matrix 
Rows and Cols

Matrix 

Reordering

IMPROVING REGULARITY WITH MATRIX REORDERING
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IMPROVING REGULARITY WITH MATRIX REORDERING
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OUTLINE

❖Matrix Reordering Improves Locality 

❖Methodology for Evaluating Reordering Techniques

❖Community-based matrix reordering (RABBIT) is best overall

❖RABBIT++: Transformations to improve RABBIT 
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EVALUATION METHODOLOGY

HARDWARE: NVIDIA A6000 GPU
L2 Cache DRAM Bandwidth Mem Capacity

6MB 768GB/s 48GB

SOFTWARE: NVIDIA cuSPARSE library (v11.8)
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EVALUATION METHODOLOGY

HARDWARE: NVIDIA A6000 GPU
L2 Cache DRAM Bandwidth Mem Capacity

6MB 768GB/s 48GB

SOFTWARE: NVIDIA cuSPARSE library (v11.8)

Our final input set comprises of 50 matrices 

spanning diverse domains

INPUTS: We select one matrix from each distinct group across 3 datasets  
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OUTLINE

❖Matrix Reordering Improves Performance 

❖Methodology for Evaluating Reordering Techniques 

❖Community-based matrix reordering (RABBIT) is best overall

❖RABBIT++: Transformations to improve RABBIT 
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OUTLINE

❖Matrix Reordering Improves Performance 

❖Methodology for Evaluating Reordering Techniques 

❖Community-based matrix reordering (RABBIT) is best overall

❖RABBIT++: Transformations to improve RABBIT 
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COMPARING EXISTING REORDERING TECHNIQUES
cuSPARSE SpMV on NVIDIA A6000 GPU
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COMPARING EXISTING REORDERING TECHNIQUES
cuSPARSE SpMV on NVIDIA A6000 GPU
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COMPARING EXISTING REORDERING TECHNIQUES
cuSPARSE SpMV on NVIDIA A6000 GPU
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OUTLINE

❖Matrix Reordering Improves Performance 

❖Methodology for Evaluating Reordering Techniques 

❖Community-based matrix reordering (RABBIT) is best overall

❖RABBIT++: Transformations to improve RABBIT 
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OUTLINE

❖Matrix Reordering Improves Performance 

❖Methodology for Evaluating Reordering Techniques 

❖Community-based matrix reordering (RABBIT) is best overall

❖RABBIT++: Transformations to improve RABBIT 
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ZOOMING IN ON RABBIT ORDERING
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cuSPARSE SpMV Run Time on NVIDIA A6000 (Normalized to Ideal)
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Lower is better

ZOOMING IN ON RABBIT ORDERING
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27 out of 50 inputs are 

within 25% of Ideal Run Time 

cuSPARSE SpMV Run Time on NVIDIA A6000 (Normalized to Ideal)
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ZOOMING IN ON RABBIT ORDERING
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RABBIT does not bring all

matrices to ideal 

Lower is better

cuSPARSE SpMV Run Time on NVIDIA A6000 (Normalized to Ideal)
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ZOOMING IN ON RABBIT ORDERING
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Lower is better
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cuSPARSE SpMV Run Time on NVIDIA A6000 (Normalized to Ideal)
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LIMITATIONS OF RABBIT

Strong Community Structure
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LIMITATIONS OF RABBIT

Strong Community Structure

Small and 
independent 
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LIMITATIONS OF RABBIT
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LIMITATIONS OF RABBIT
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LIMITATIONS OF RABBIT

Strong Community Structure Weak Community Structure

Small and 
independent 
communities

Large 
Communities

Many Inter-
Community 

links

We need to reduce 

inter-community links 

and reduce the average 

community size
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PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE
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PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE

Insular Vertex:
All neighbors are in the same community

Insular Vertices
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• PROPERTY #1: A large percentage of the matrix is insular 

PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE

Strength of community structure
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• PROPERTY #1: A large percentage of the matrix is insular

PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE

Strength of community structure

Inputs with strong 

community structure 

are mostly insular



47

• PROPERTY #1: A large percentage of the matrix is insular 

PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE

Strength of community structure

Even in Inputs with 

weak community 

structure, a large % of 

vertices are insular
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• PROPERTY #1: A large percentage of the matrix is insular

• PROPERTY #2: Hubs account for most of the inter-community links

• Highly-connected hubs (vertices with degree > average degree) are responsible 
for 86% for all inter-community links

PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE
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ENHANCING RABBIT

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Insular Vertices

Hub Vertices
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ENHANCING RABBIT
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ENHANCING RABBIT
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ENHANCING RABBIT

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Transformation #1:
Group Insular Vertices

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Transformation #2:
Group Hub Vertices

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Insular Vertices

Hub Vertices

RABBIT++
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PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU
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PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU
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PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU
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PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU
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PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU
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PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU
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RABBIT++ improves SpMV performance over RABBIT by up to 1.6x 
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MORE DETAILS IN THE PAPER

➢RABBIT++ offers DRAM traffic reductions close to Belady’s Optimal 

cache replacement policy

➢RABBIT++ brings multiple compressed representations and kernels 

closest to hardware limits

➢Preprocessing overheads of RABBIT(++)
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COMMUNITY-BASED MATRIX REORDERING FOR 
SPARSE LINEAR ALGEBRA OPTIMIZATION

Vignesh Balaji Neal Crago Aamer Jaleel Stephen W. Keckler
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BACKUP SLIDES
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PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU
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RABBIT++ improves SpMV performance over RABBIT by up to 1.57x 

QUESTION: How much additional 

headroom for improvement do we 

have with RABBIT++ for 

low-insularity inputs?
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HOW FAR IS RABBIT++ FROM OPTIMAL?  
Experiments on a L2 cache simulator

0

1

2

3

4

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT RABBIT++

SpMV DRAM Traffic Normalized to Ideal (Low Insularity Input)

LRU BELADY-21.5%

-21.4% -22.4% -19.8%

-14.9% -12.3%
-7.6%



64

RABBIT++ ACROSS DIFFERENT CUSPARSE KERNELS/FORMATS
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PREPROCESSING COSTS



66

EVALUATION METHODOLOGY

HARDWARE: NVIDIA A6000 GPU
L2 Cache DRAM Bandwidth Mem Capacity

6MB 768GB/s 48GB

SOFTWARE: NVIDIA cuSPARSE library (v11.8)

INPUTS:

TWITTER HYPERLINK DBPEDIA LIVEJOURNAL KMER

Lower is better

ORIGINAL

RABBIT

SpMV DRAM Traffic (Normalized to Algo. Min)

Matrices* *Subset of matrices evaluated

-3.1%

-56.7%

-28.1% -25% -16.1%

Locality improvement 

from reordering is 

sensitive to matrices

PROBLEM: Prior work on reordering 

were evaluated on a small number 

(<10) of arbitrarily-selected matrices
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SPMV KERNEL



68

DRAM TRAFFIC AND PERF RESULTS ACROSS ALL INPUTS
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DIFFERENT ALTERNATIVES FOR RABBIT++
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RABBIT++ TRAFFIC REDUCTIONS
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RABBIT++ ACROSS DIFFERENT CUSPARSE KERNELS/FORMATS
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COMMUNITY-BASED GRAPH REORDERING

Figure from “Rabbit Order: Just-in-time Parallel Reordering for Fast Graph Analysis” IPDPS 2016

High-level Overview of RABBIT
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RABBIT IMPROVES LOCALITY ACROSS MULTIPLE KERNELS

cuSparse SDDMM

NNZ

spy(A)
(Sparse Matrix)

B
(Dense Matrix)

N

K

N

N

NNZ

A
(Sparse Matrix)

N

N

N

K

C
(Dense Matrix)

Insularity
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COMPARING EXISTING REORDERING TECHNIQUES

Reordering Technique* Structural Property Targeted Intuition

Degree Sorting 

(DEGSORT)

Power-law degree distribution Assign IDs in decreasing order of vertex 

degrees

Degree Based Grouping 

(DBG)

Power-law degree distribution Assign contiguous IDs to vertices in the 

same degrees bucket

RABBIT Community Structure Assign contiguous IDs to vertices in the 

same community

GORDER Power-Law + Community Assign contiguous IDs to vertices with a 

strong overlap in neighborhoods

*Techniques organized in increasing order of reordering complexity
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A METRIC TO QUANTIFY BENEFITS WITH RABBIT
Insularity

From a locality perspective, we need 

highly self-contained and small

communities

Insularity = 
𝐼𝑛𝑡𝑟𝑎−𝐶𝑜𝑚𝑚−𝐸𝑑𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙−𝐶𝑜𝑚𝑚−𝐸𝑑𝑔𝑒𝑠
= 
20

24
= 0.83

SpMV Run Time (normalized to ideal) has a strong 

inverse correlation with insularity (ρ = -0.74)
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ENHANCING RABBIT

Hubs

RABBIT RABBIT++

Insular 

Nodes

*Cartoon representation
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MATRIX REORDERING ACROSS DIFFERENT GPUS

0

1

2

3

4

5

6

7

P100 (4MB L2) V100 (6MB L2) A6000 (6MB L2) A100 (40MB L2)

Speedup across multiple GPUs (for cuSPARSE SpMV)

ORIGINAL REORDERED
9.95x
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