
1

COMMUNITY-BASED MATRIX REORDERING FOR
SPARSE LINEAR ALGEBRA OPTIMIZATION

Vignesh Balaji Neal Crago Aamer Jaleel Stephen W. Keckler

2

PROBLEM – SUBOPTIMAL SPARSE LINEAR ALGEBRA PERFORMANCE

3

PROBLEM – SUBOPTIMAL SPARSE LINEAR ALGEBRA PERFORMANCE

Y
(Dense Vector)

A
(Sparse Matrix)

X
(Dense Vector)

N

1

N

1

N

N

L2

Cache
DRAM

SM

SM

L1

Cache

L1

Cache

Y, A, X

Sparse Matrix Vector Multiplication (SpMV)

4

PROBLEM – SUBOPTIMAL SPARSE LINEAR ALGEBRA PERFORMANCE
Characterization on NVIDIA A6000 GPU

*Subset of matrices evaluated

0

1

2

3

4

5

TWITTER HYPERLINK DBPEDIA LIVEJOURNAL KMER

DRAM Traffic (Normalized to Algo. Min)

Matrices*

Lower is better

Y
(Dense Vector)

A
(Sparse Matrix)

X
(Dense Vector)

N

1

N

1

N

N

Algo

Min

L2

Cache
DRAM

SM

SM

L1

Cache

L1

Cache

Y, A, X

Sparse Matrix Vector Multiplication (SpMV)

5

Algo

Min

PROBLEM – SUBOPTIMAL SPARSE LINEAR ALGEBRA PERFORMANCE
Characterization on NVIDIA A6000 GPU

0

1

2

3

4

5

TWITTER HYPERLINK DBPEDIA LIVEJOURNAL KMER

DRAM Traffic (Normalized to Algo. Min)

Matrices*

3.97x

3.32x

1.95x
1.82x 1.77x

Lower is better

L2

Cache
DRAM

SM

SM

L1

Cache

L1

Cache

Y, A, X

*Subset of matrices evaluated

Y
(Dense Vector)

A
(Sparse Matrix)

X
(Dense Vector)

N

1

N

1

N

N

Sparse Matrix Vector Multiplication (SpMV)

6

SOURCE OF POOR PERFORMANCE -- IRREGULARITY

Y
(Dense Vector)

A
(Sparse Matrix)

X
(Dense Vector)

N

1

N

1

N

N

Sparse Matrix Vector Multiplication (SpMV)

7

SOURCE OF POOR PERFORMANCE -- IRREGULARITY

Typically,

greater than

99% of entries

are zeros Y
(Dense Vector)

A
(Sparse Matrix)

X
(Dense Vector)

N

1

N

1

N

N

Sparse Matrix Vector Multiplication (SpMV)

8

SOURCE OF POOR PERFORMANCE -- IRREGULARITY

Typically,

greater than

99% of entries

are zeros Y
(Dense Vector)

A
(Sparse Matrix)

X
(Dense Vector)

N

1

N

1

N

N

Sparse Matrix Vector Multiplication (SpMV)

9

SOURCE OF POOR PERFORMANCE -- IRREGULARITY

Typically,

greater than

99% of entries

are zeros Y
(Dense Vector)

A
(Sparse Matrix)

X
(Dense Vector)

N

1

N

1

N

N

Sparse Matrix Vector Multiplication (SpMV)

10

SOURCE OF POOR PERFORMANCE -- IRREGULARITY

Typically,

greater than

99% of entries

are zeros Y
(Dense Vector)

A
(Sparse Matrix)

X
(Dense Vector)

N

1

N

1

N

N

Sparse Matrix Vector Multiplication (SpMV)

Compressed Representations of sparse matrices lead

to fine-grained, irregular accesses to Input Vector (X)

11

IMPROVING REGULARITY WITH MATRIX REORDERING

12

IMPROVING REGULARITY WITH MATRIX REORDERING

13

Many real-world networks
exhibit community structure:

• Social Networks
• Web Crawls
• Biological Networks
• Knowledge graphs
• …

IMPROVING REGULARITY WITH MATRIX REORDERING

14

Relabel Matrix
Rows and Cols

IMPROVING REGULARITY WITH MATRIX REORDERING

15

Relabel Matrix
Rows and Cols

Matrix

Reordering

IMPROVING REGULARITY WITH MATRIX REORDERING

16

Matrix

Reordering

TWITTER HYPERLINK DBPEDIA LIVEJOURNAL KMER

Lower is better

ORIGINAL

SpMV DRAM Traffic (Normalized to Algo. Min)

IMPROVING REGULARITY WITH MATRIX REORDERING

17

Matrix

Reordering

TWITTER HYPERLINK DBPEDIA LIVEJOURNAL KMER

Lower is better

ORIGINAL

RABBIT

SpMV DRAM Traffic (Normalized to Algo. Min)

IMPROVING REGULARITY WITH MATRIX REORDERING

18

OUTLINE

❖Matrix Reordering Improves Locality

❖Methodology for Evaluating Reordering Techniques

❖Community-based matrix reordering (RABBIT) is best overall

❖RABBIT++: Transformations to improve RABBIT

19

OUTLINE

❖Matrix Reordering Improves Locality

❖Methodology for Evaluating Reordering Techniques

❖Community-based matrix reordering (RABBIT) is best overall

❖RABBIT++: Transformations to improve RABBIT

20

EVALUATION METHODOLOGY

HARDWARE: NVIDIA A6000 GPU
L2 Cache DRAM Bandwidth Mem Capacity

6MB 768GB/s 48GB

SOFTWARE: NVIDIA cuSPARSE library (v11.8)

21

EVALUATION METHODOLOGY

HARDWARE: NVIDIA A6000 GPU
L2 Cache DRAM Bandwidth Mem Capacity

6MB 768GB/s 48GB

SOFTWARE: NVIDIA cuSPARSE library (v11.8)

INPUTS: We select one matrix from each distinct group across 3 datasets

22

EVALUATION METHODOLOGY

HARDWARE: NVIDIA A6000 GPU
L2 Cache DRAM Bandwidth Mem Capacity

6MB 768GB/s 48GB

SOFTWARE: NVIDIA cuSPARSE library (v11.8)

Our final input set comprises of 50 matrices

spanning diverse domains

INPUTS: We select one matrix from each distinct group across 3 datasets

23

OUTLINE

❖Matrix Reordering Improves Performance

❖Methodology for Evaluating Reordering Techniques

❖Community-based matrix reordering (RABBIT) is best overall

❖RABBIT++: Transformations to improve RABBIT

24

OUTLINE

❖Matrix Reordering Improves Performance

❖Methodology for Evaluating Reordering Techniques

❖Community-based matrix reordering (RABBIT) is best overall

❖RABBIT++: Transformations to improve RABBIT

25

COMPARING EXISTING REORDERING TECHNIQUES
cuSPARSE SpMV on NVIDIA A6000 GPU

0

1

2

3

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

Reordering Techniques

Ideal Traffic = Algorithmic Minimum DRAM Transfers

26

COMPARING EXISTING REORDERING TECHNIQUES
cuSPARSE SpMV on NVIDIA A6000 GPU

0

1

2

3

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT

3.97x

1.54x

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

Reordering Techniques

Ideal Traffic = Algorithmic Minimum DRAM Transfers

27

COMPARING EXISTING REORDERING TECHNIQUES
cuSPARSE SpMV on NVIDIA A6000 GPU

0

1

2

3

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT

3.97x

1.54x 1.61x

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

1.48x

Reordering Techniques

Ideal Traffic = Algorithmic Minimum DRAM Transfers

28

COMPARING EXISTING REORDERING TECHNIQUES
cuSPARSE SpMV on NVIDIA A6000 GPU

0

1

2

3

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT

3.97x

1.54x 1.61x

1.29x

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

1.48x

Reordering Techniques

Ideal Traffic = Algorithmic Minimum DRAM Transfers

29

COMPARING EXISTING REORDERING TECHNIQUES
cuSPARSE SpMV on NVIDIA A6000 GPU

0

1

2

3

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT

3.97x

1.54x 1.61x

1.29x 1.27x

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

1.48x

Reordering Techniques

Community-0

Community-1

Community-2

Ideal Traffic = Algorithmic Minimum DRAM Transfers

30

COMPARING EXISTING REORDERING TECHNIQUES
cuSPARSE SpMV on NVIDIA A6000 GPU

0

1

2

3

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT

3.97x

1.54x 1.61x

1.29x 1.27x

0

1

2

3

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT

Lower is better Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

1.48x

Reordering Techniques

Gmean Run Time (Normalized to Ideal)

Reordering Techniques

Ideal Traffic = Algorithmic Minimum DRAM Transfers Ideal Run Time =
Algorithmic Min Traffic

Peak DRAM Bandwidth

31

COMPARING EXISTING REORDERING TECHNIQUES
cuSPARSE SpMV on NVIDIA A6000 GPU

0

1

2

3

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT

3.97x

1.54x 1.61x

1.29x 1.27x

0

1

2

3

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT

1.96x

Lower is better Lower is better

2.17x
1.94x

1.54x

Gmean DRAM Traffic (Normalized to Ideal)

1.48x

Reordering Techniques

Gmean Run Time (Normalized to Ideal)

6.21x

1.56x

Ideal Traffic = Algorithmic Minimum DRAM Transfers Ideal Run Time =
Algorithmic Min Traffic

Peak DRAM Bandwidth

Reordering Techniques

32

OUTLINE

❖Matrix Reordering Improves Performance

❖Methodology for Evaluating Reordering Techniques

❖Community-based matrix reordering (RABBIT) is best overall

❖RABBIT++: Transformations to improve RABBIT

33

OUTLINE

❖Matrix Reordering Improves Performance

❖Methodology for Evaluating Reordering Techniques

❖Community-based matrix reordering (RABBIT) is best overall

❖RABBIT++: Transformations to improve RABBIT

34

ZOOMING IN ON RABBIT ORDERING

0

1

2

3

4

5

6

7

8

9

10

e
u
ro

p
e
_
o
sm

sk
-2

0
0
5

G
A
P
-r

o
a
d

st
o
k
e
s

rg
g
_
n
_
2
_
2
4
_

h
u
g
e
b
u
b
b
le

s

d
e
la

u
n
a
y
_
n
2

h
u
g
e
tr

a
c
e
-0

a
f_

sh
e
ll
1
0

a
d
a
p
ti

v
e

c
h
a
n
n
e
l-

5
0
0

n
lp

k
k
t2

4
0

h
u
g
e
tr

ic
-0

0

Q
u
e
e
n
_
4
1
4
7

3
3
3
S
P

N
L
R

A
S
3
6
5

M
6

p
a
c
k
in

g
-5

0
0

v
e
n
tu

ri
L
e
v
e

w
b
-e

d
u

ra
ja

t3
1

C
u
rl

C
u
rl

_
4

a
s-

S
k
it

te
r

G
3
_
c
ir

c
u
it

w
ik

i-
to

p
c
a
t

k
k
t_

p
o
w

e
r

c
ir

c
u
it

5
M

H
V
1
5
R

k
m

e
r_

V
1
r

c
o
m

-O
rk

u
t

so
c
-p

o
k
e
c
-r

o
rk

u
t-

li
n
k
s

c
it

-P
a
te

n
ts

c
a
g
e
1
5

p
a
te

n
ts

w
ik

ip
e
d
ia

-l

k
ro

n
_
g
5
0
0
-l

c
o
m

-L
iv

e
J
o
u

w
ik

i-
T
a
lk

so
c
-L

iv
e
J
o
u

z
h
is

h
i-

a
ll

d
b
p
e
d
ia

-l
in

sx
-s

ta
c
k
o
v
e

g
p
lu

s

sd
-a

rc

m
a
w

i_
2
0
1
5
1
2

p
ld

-a
rc

tw
it

te
r-

m
p
i

G
A
P
-t

w
it

te
r

Matrices

Lower is better

cuSPARSE SpMV Run Time on NVIDIA A6000 (Normalized to Ideal)

35

Lower is better

ZOOMING IN ON RABBIT ORDERING

0

1

2

3

4

5

6

7

8

9

10

e
u
ro

p
e
_
o
sm

sk
-2

0
0
5

G
A
P
-r

o
a
d

st
o
k
e
s

rg
g
_
n
_
2
_
2
4
_

h
u
g
e
b
u
b
b
le

s

d
e
la

u
n
a
y
_
n
2

h
u
g
e
tr

a
c
e
-0

a
f_

sh
e
ll
1
0

a
d
a
p
ti

v
e

c
h
a
n
n
e
l-

5
0
0

n
lp

k
k
t2

4
0

h
u
g
e
tr

ic
-0

0

Q
u
e
e
n
_
4
1
4
7

3
3
3
S
P

N
L
R

A
S
3
6
5

M
6

p
a
c
k
in

g
-5

0
0

v
e
n
tu

ri
L
e
v
e

w
b
-e

d
u

ra
ja

t3
1

C
u
rl

C
u
rl

_
4

a
s-

S
k
it

te
r

G
3
_
c
ir

c
u
it

w
ik

i-
to

p
c
a
t

k
k
t_

p
o
w

e
r

c
ir

c
u
it

5
M

H
V
1
5
R

k
m

e
r_

V
1
r

c
o
m

-O
rk

u
t

so
c
-p

o
k
e
c
-r

o
rk

u
t-

li
n
k
s

c
it

-P
a
te

n
ts

c
a
g
e
1
5

p
a
te

n
ts

w
ik

ip
e
d
ia

-l

k
ro

n
_
g
5
0
0
-l

c
o
m

-L
iv

e
J
o
u

w
ik

i-
T
a
lk

so
c
-L

iv
e
J
o
u

z
h
is

h
i-

a
ll

d
b
p
e
d
ia

-l
in

sx
-s

ta
c
k
o
v
e

g
p
lu

s

sd
-a

rc

m
a
w

i_
2
0
1
5
1
2

p
ld

-a
rc

tw
it

te
r-

m
p
i

G
A
P
-t

w
it

te
r

Matrices

27 out of 50 inputs are

within 25% of Ideal Run Time

cuSPARSE SpMV Run Time on NVIDIA A6000 (Normalized to Ideal)

36

ZOOMING IN ON RABBIT ORDERING

0

1

2

3

4

5

6

7

8

9

10

e
u
ro

p
e
_
o
sm

sk
-2

0
0
5

G
A
P
-r

o
a
d

st
o
k
e
s

rg
g
_
n
_
2
_
2
4
_

h
u
g
e
b
u
b
b
le

s

d
e
la

u
n
a
y
_
n
2

h
u
g
e
tr

a
c
e
-0

a
f_

sh
e
ll
1
0

a
d
a
p
ti

v
e

c
h
a
n
n
e
l-

5
0
0

n
lp

k
k
t2

4
0

h
u
g
e
tr

ic
-0

0

Q
u
e
e
n
_
4
1
4
7

3
3
3
S
P

N
L
R

A
S
3
6
5

M
6

p
a
c
k
in

g
-5

0
0

v
e
n
tu

ri
L
e
v
e

w
b
-e

d
u

ra
ja

t3
1

C
u
rl

C
u
rl

_
4

a
s-

S
k
it

te
r

G
3
_
c
ir

c
u
it

w
ik

i-
to

p
c
a
t

k
k
t_

p
o
w

e
r

c
ir

c
u
it

5
M

H
V
1
5
R

k
m

e
r_

V
1
r

c
o
m

-O
rk

u
t

so
c
-p

o
k
e
c
-r

o
rk

u
t-

li
n
k
s

c
it

-P
a
te

n
ts

c
a
g
e
1
5

p
a
te

n
ts

w
ik

ip
e
d
ia

-l

k
ro

n
_
g
5
0
0
-l

c
o
m

-L
iv

e
J
o
u

w
ik

i-
T
a
lk

so
c
-L

iv
e
J
o
u

z
h
is

h
i-

a
ll

d
b
p
e
d
ia

-l
in

sx
-s

ta
c
k
o
v
e

g
p
lu

s

sd
-a

rc

m
a
w

i_
2
0
1
5
1
2

p
ld

-a
rc

tw
it

te
r-

m
p
i

G
A
P
-t

w
it

te
r

Matrices

RABBIT does not bring all

matrices to ideal

Lower is better

cuSPARSE SpMV Run Time on NVIDIA A6000 (Normalized to Ideal)

37

ZOOMING IN ON RABBIT ORDERING

0

1

2

3

4

5

6

7

8

9

10

e
u
ro

p
e
_
o
sm

sk
-2

0
0
5

G
A
P
-r

o
a
d

st
o
k
e
s

rg
g
_
n
_
2
_
2
4
_

h
u
g
e
b
u
b
b
le

s

d
e
la

u
n
a
y
_
n
2

h
u
g
e
tr

a
c
e
-0

a
f_

sh
e
ll
1
0

a
d
a
p
ti

v
e

c
h
a
n
n
e
l-

5
0
0

n
lp

k
k
t2

4
0

h
u
g
e
tr

ic
-0

0

Q
u
e
e
n
_
4
1
4
7

3
3
3
S
P

N
L
R

A
S
3
6
5

M
6

p
a
c
k
in

g
-5

0
0

v
e
n
tu

ri
L
e
v
e

w
b
-e

d
u

ra
ja

t3
1

C
u
rl

C
u
rl

_
4

a
s-

S
k
it

te
r

G
3
_
c
ir

c
u
it

w
ik

i-
to

p
c
a
t

k
k
t_

p
o
w

e
r

c
ir

c
u
it

5
M

H
V
1
5
R

k
m

e
r_

V
1
r

c
o
m

-O
rk

u
t

so
c
-p

o
k
e
c
-r

o
rk

u
t-

li
n
k
s

c
it

-P
a
te

n
ts

c
a
g
e
1
5

p
a
te

n
ts

w
ik

ip
e
d
ia

-l

k
ro

n
_
g
5
0
0
-l

c
o
m

-L
iv

e
J
o
u

w
ik

i-
T
a
lk

so
c
-L

iv
e
J
o
u

z
h
is

h
i-

a
ll

d
b
p
e
d
ia

-l
in

sx
-s

ta
c
k
o
v
e

g
p
lu

s

sd
-a

rc

m
a
w

i_
2
0
1
5
1
2

p
ld

-a
rc

tw
it

te
r-

m
p
i

G
A
P
-t

w
it

te
r

Matrices

Lower is better

Strong Community
Structure

Weak Community
Structure

cuSPARSE SpMV Run Time on NVIDIA A6000 (Normalized to Ideal)

38

LIMITATIONS OF RABBIT

Strong Community Structure

39

LIMITATIONS OF RABBIT

Strong Community Structure

Small and
independent
communities

40

LIMITATIONS OF RABBIT

Strong Community Structure Weak Community Structure

Small and
independent
communities

41

LIMITATIONS OF RABBIT

Strong Community Structure Weak Community Structure

Small and
independent
communities

Large
Communities

Many Inter-
Community

links

42

LIMITATIONS OF RABBIT

Strong Community Structure Weak Community Structure

Small and
independent
communities

Large
Communities

Many Inter-
Community

links

We need to reduce

inter-community links

and reduce the average

community size

43

PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE

44

PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE

Insular Vertex:
All neighbors are in the same community

Insular Vertices

45

• PROPERTY #1: A large percentage of the matrix is insular

PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE

Strength of community structure

46

• PROPERTY #1: A large percentage of the matrix is insular

PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE

Strength of community structure

Inputs with strong

community structure

are mostly insular

47

• PROPERTY #1: A large percentage of the matrix is insular

PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE

Strength of community structure

Even in Inputs with

weak community

structure, a large % of

vertices are insular

48

• PROPERTY #1: A large percentage of the matrix is insular

• PROPERTY #2: Hubs account for most of the inter-community links

• Highly-connected hubs (vertices with degree > average degree) are responsible
for 86% for all inter-community links

PROPERTIES OF INPUTS WITH WEAK COMMUNITY STRUCTURE

49

ENHANCING RABBIT

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Insular Vertices

Hub Vertices

50

ENHANCING RABBIT

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Transformation #1:
Group Insular Vertices

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Insular Vertices

Hub Vertices

51

ENHANCING RABBIT

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Transformation #1:
Group Insular Vertices

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Transformation #2:
Group Hub Vertices

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Insular Vertices

Hub Vertices

52

ENHANCING RABBIT

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Transformation #1:
Group Insular Vertices

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Transformation #2:
Group Hub Vertices

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9

Insular Vertices

Hub Vertices

RABBIT++

53

PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

HIGH-INS-ONLY LOW-INS-ONLY ALL-INPUTS

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

RABBIT RABBIT++

Ideal Traffic = Algorithmic Minimum DRAM Transfers

54

PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

HIGH-INS-ONLY LOW-INS-ONLY ALL-INPUTS

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

RABBIT RABBIT++

1.14x 1.14x

Ideal Traffic = Algorithmic Minimum DRAM Transfers

55

PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

HIGH-INS-ONLY LOW-INS-ONLY ALL-INPUTS

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

1.48x

1.34x

RABBIT RABBIT++

1.14x 1.14x

Ideal Traffic = Algorithmic Minimum DRAM Transfers

56

PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

HIGH-INS-ONLY LOW-INS-ONLY ALL-INPUTS

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

1.48x

1.34x

RABBIT RABBIT++

1.14x 1.14x

Ideal Traffic = Algorithmic Minimum DRAM Transfers

1.27x 1.22x

57

PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

HIGH-INS-ONLY LOW-INS-ONLY ALL-INPUTS

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

1.48x

1.34x

RABBIT RABBIT++

1.14x 1.14x

Ideal Traffic = Algorithmic Minimum DRAM Transfers

1.27x 1.22x

Ideal Run Time =
Algorithmic Min Traffic

Peak DRAM Bandwidth

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

HIGH-INS-ONLY LOW-INS-ONLY ALL-INPUTS

Lower is better

Gmean Run Time (Normalized to Ideal)

1.54x
1.46x

1.98x

1.74x

1.29x 1.29x

RABBIT RABBIT++

58

PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

HIGH-INS-ONLY LOW-INS-ONLY ALL-INPUTS

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

1.48x

1.34x

RABBIT RABBIT++

1.14x 1.14x

Ideal Traffic = Algorithmic Minimum DRAM Transfers

1.27x 1.22x

Ideal Run Time =
Algorithmic Min Traffic

Peak DRAM Bandwidth

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

HIGH-INS-ONLY LOW-INS-ONLY ALL-INPUTS

Lower is better

Gmean Run Time (Normalized to Ideal)

1.54x
1.46x

1.98x

1.74x

1.29x 1.29x

RABBIT RABBIT++

RABBIT++ improves SpMV performance over RABBIT by up to 1.6x

59

MORE DETAILS IN THE PAPER

➢RABBIT++ offers DRAM traffic reductions close to Belady’s Optimal

cache replacement policy

➢RABBIT++ brings multiple compressed representations and kernels

closest to hardware limits

➢Preprocessing overheads of RABBIT(++)

60

COMMUNITY-BASED MATRIX REORDERING FOR
SPARSE LINEAR ALGEBRA OPTIMIZATION

Vignesh Balaji Neal Crago Aamer Jaleel Stephen W. Keckler

61

BACKUP SLIDES

62

PERFORMANCE IMPROVEMENTS WITH RABBIT++
cuSPARSE SpMV on NVIDIA A6000 GPU

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ALL-INPUTS LOW-INS-ONLY HIGH-INS-ONLY

Lower is better

Gmean DRAM Traffic (Normalized to Ideal)

1.21x
1.16x

1.44x

1.3x

1.07x 1.07x

RABBIT RABBIT++

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ALL-INPUTS LOW-INS-ONLY HIGH-INS-ONLY

Lower is better

Gmean Run Time (Normalized to Ideal)

1.44x
1.37x

1.9x

1.68x

1.18x 1.18x

RABBIT RABBIT++

RABBIT++ improves SpMV performance over RABBIT by up to 1.57x

QUESTION: How much additional

headroom for improvement do we

have with RABBIT++ for

low-insularity inputs?

63

HOW FAR IS RABBIT++ FROM OPTIMAL?
Experiments on a L2 cache simulator

0

1

2

3

4

RANDOM ORIGINAL DEGSORT DBG GORDER RABBIT RABBIT++

SpMV DRAM Traffic Normalized to Ideal (Low Insularity Input)

LRU BELADY-21.5%

-21.4% -22.4% -19.8%

-14.9% -12.3%
-7.6%

64

RABBIT++ ACROSS DIFFERENT CUSPARSE KERNELS/FORMATS

65

PREPROCESSING COSTS

66

EVALUATION METHODOLOGY

HARDWARE: NVIDIA A6000 GPU
L2 Cache DRAM Bandwidth Mem Capacity

6MB 768GB/s 48GB

SOFTWARE: NVIDIA cuSPARSE library (v11.8)

INPUTS:

TWITTER HYPERLINK DBPEDIA LIVEJOURNAL KMER

Lower is better

ORIGINAL

RABBIT

SpMV DRAM Traffic (Normalized to Algo. Min)

Matrices* *Subset of matrices evaluated

-3.1%

-56.7%

-28.1% -25% -16.1%

Locality improvement

from reordering is

sensitive to matrices

PROBLEM: Prior work on reordering

were evaluated on a small number

(<10) of arbitrarily-selected matrices

67

SPMV KERNEL

68

DRAM TRAFFIC AND PERF RESULTS ACROSS ALL INPUTS

69

DIFFERENT ALTERNATIVES FOR RABBIT++

70

RABBIT++ TRAFFIC REDUCTIONS

71

RABBIT++ ACROSS DIFFERENT CUSPARSE KERNELS/FORMATS

72

COMMUNITY-BASED GRAPH REORDERING

Figure from “Rabbit Order: Just-in-time Parallel Reordering for Fast Graph Analysis” IPDPS 2016

High-level Overview of RABBIT

73

RABBIT IMPROVES LOCALITY ACROSS MULTIPLE KERNELS

cuSparse SDDMM

NNZ

spy(A)
(Sparse Matrix)

B
(Dense Matrix)

N

K

N

N

NNZ

A
(Sparse Matrix)

N

N

N

K

C
(Dense Matrix)

Insularity

74

COMPARING EXISTING REORDERING TECHNIQUES

Reordering Technique* Structural Property Targeted Intuition

Degree Sorting

(DEGSORT)

Power-law degree distribution Assign IDs in decreasing order of vertex

degrees

Degree Based Grouping

(DBG)

Power-law degree distribution Assign contiguous IDs to vertices in the

same degrees bucket

RABBIT Community Structure Assign contiguous IDs to vertices in the

same community

GORDER Power-Law + Community Assign contiguous IDs to vertices with a

strong overlap in neighborhoods

*Techniques organized in increasing order of reordering complexity

75

A METRIC TO QUANTIFY BENEFITS WITH RABBIT
Insularity

From a locality perspective, we need

highly self-contained and small

communities

Insularity =
𝐼𝑛𝑡𝑟𝑎−𝐶𝑜𝑚𝑚−𝐸𝑑𝑔𝑒𝑠

𝑇𝑜𝑡𝑎𝑙−𝐶𝑜𝑚𝑚−𝐸𝑑𝑔𝑒𝑠
=
20

24
= 0.83

SpMV Run Time (normalized to ideal) has a strong

inverse correlation with insularity (ρ = -0.74)

76

ENHANCING RABBIT

Hubs

RABBIT RABBIT++

Insular

Nodes

*Cartoon representation

77

MATRIX REORDERING ACROSS DIFFERENT GPUS

0

1

2

3

4

5

6

7

P100 (4MB L2) V100 (6MB L2) A6000 (6MB L2) A100 (40MB L2)

Speedup across multiple GPUs (for cuSPARSE SpMV)

ORIGINAL REORDERED
9.95x

	Slide 1: Community-based matrix reordering for sparse linear algebra optimization
	Slide 2: Problem – Suboptimal sparse linear algebra performance
	Slide 3: Problem – Suboptimal sparse linear algebra performance
	Slide 4: Problem – Suboptimal sparse linear algebra performance
	Slide 5: Problem – Suboptimal sparse linear algebra performance
	Slide 6: SOURCE of poor performance -- IRREGULARITY
	Slide 7: SOURCE of poor performance -- IRREGULARITY
	Slide 8: SOURCE of poor performance -- IRREGULARITY
	Slide 9: SOURCE of poor performance -- IRREGULARITY
	Slide 10: SOURCE of poor performance -- IRREGULARITY
	Slide 11: Improving Regularity with matrix reordering
	Slide 12: Improving Regularity with matrix reordering
	Slide 13: Improving Regularity with matrix reordering
	Slide 14: Improving Regularity with matrix reordering
	Slide 15: Improving Regularity with matrix reordering
	Slide 16: Improving Regularity with matrix reordering
	Slide 17: Improving Regularity with matrix reordering
	Slide 18: Outline
	Slide 19: Outline
	Slide 20: Evaluation Methodology
	Slide 21: Evaluation Methodology
	Slide 22: Evaluation Methodology
	Slide 23: Outline
	Slide 24: Outline
	Slide 25: Comparing existing reordering techniques
	Slide 26: Comparing existing reordering techniques
	Slide 27: Comparing existing reordering techniques
	Slide 28: Comparing existing reordering techniques
	Slide 29: Comparing existing reordering techniques
	Slide 30: Comparing existing reordering techniques
	Slide 31: Comparing existing reordering techniques
	Slide 32: Outline
	Slide 33: Outline
	Slide 34: Zooming in on RABBIT Ordering
	Slide 35: Zooming in on RABBIT Ordering
	Slide 36: Zooming in on RABBIT Ordering
	Slide 37: Zooming in on RABBIT Ordering
	Slide 38: LIMITATIONS of RABBIT
	Slide 39: LIMITATIONS of RABBIT
	Slide 40: LIMITATIONS of RABBIT
	Slide 41: LIMITATIONS of RABBIT
	Slide 42: LIMITATIONS of RABBIT
	Slide 43: Properties of inputs with Weak Community Structure
	Slide 44: Properties of inputs with Weak Community Structure
	Slide 45: Properties of inputs with Weak Community Structure
	Slide 46: Properties of inputs with Weak Community Structure
	Slide 47: Properties of inputs with Weak Community Structure
	Slide 48: Properties of inputs with Weak Community Structure
	Slide 49: enhancing Rabbit
	Slide 50: enhancing Rabbit
	Slide 51: enhancing Rabbit
	Slide 52: enhancing Rabbit
	Slide 53: Performance improvements with Rabbit++
	Slide 54: Performance improvements with Rabbit++
	Slide 55: Performance improvements with Rabbit++
	Slide 56: Performance improvements with Rabbit++
	Slide 57: Performance improvements with Rabbit++
	Slide 58: Performance improvements with Rabbit++
	Slide 59: More details in the paper
	Slide 60: Community-based matrix reordering for sparse linear algebra optimization
	Slide 61: Backup slides
	Slide 62: Performance improvements with Rabbit++
	Slide 63: How far is rabbit++ from optimal?
	Slide 64: RABBIT++ ACROSS DIFFERENT cuSPARSE KERNELS/FORMATS
	Slide 65: PREPROCESSING COSTS
	Slide 66: Evaluation Methodology
	Slide 67: SpMV kernel
	Slide 68: DRAM TRAFFIC AND PERF RESULTS across ALL INPUTS
	Slide 69: DIFFERENT alternatives for RABBIT++
	Slide 70: RABBIT++ traffic REDUCTions
	Slide 71: RABBIT++ ACROSS DIFFERENT cuSPARSE KERNELS/FORMATS
	Slide 72: Community-based GRAPH Reordering
	Slide 73: RABBIT IMPROVES LOCALITY ACROSS MULTIPLE KERNELS
	Slide 74: Comparing existing reordering techniques
	Slide 75: A metric to quantify benefits with RABBIT
	Slide 76: enhancing Rabbit
	Slide 77: matrix reordering ACROSS DIFFERENT GPUs

